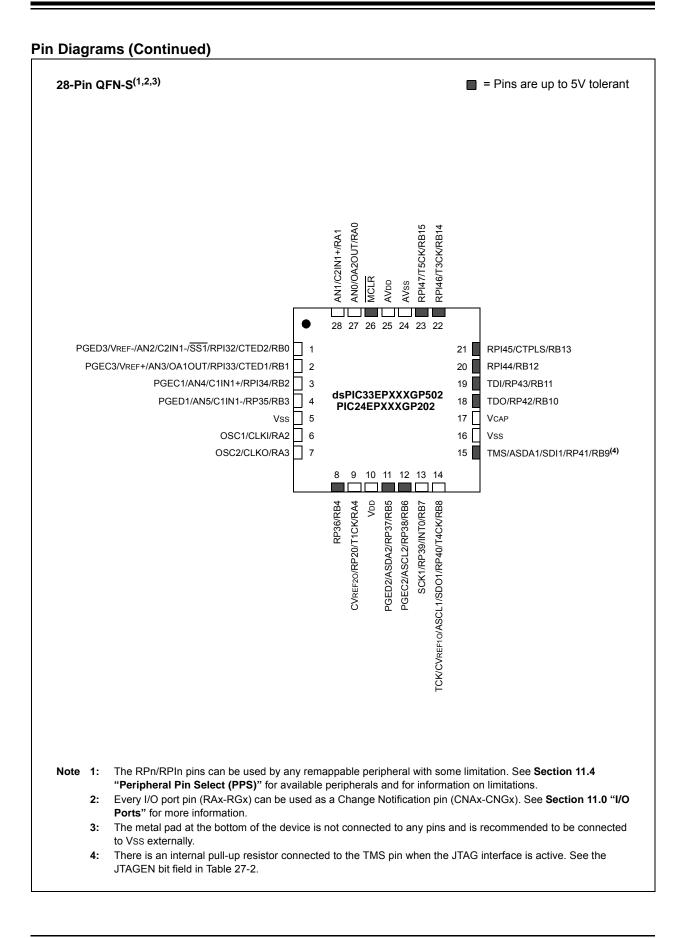


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

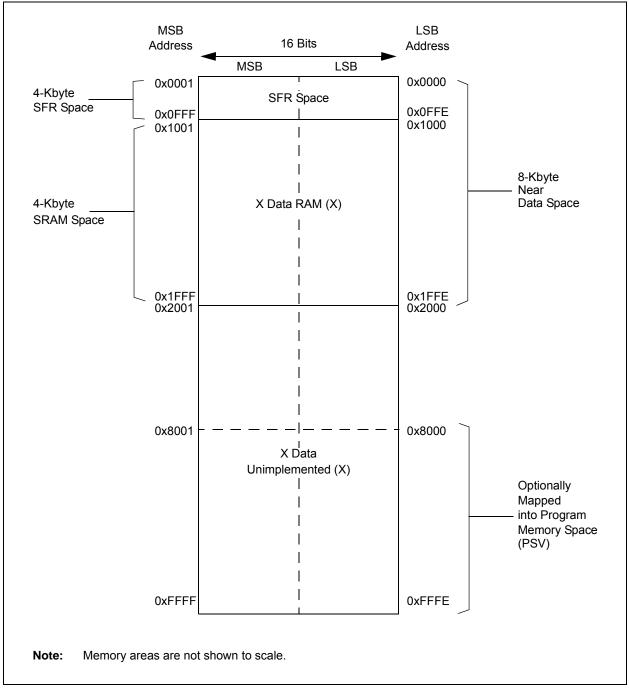

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc203t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	τу.				VELEN							DEVICE						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	-		_	—	_	_	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF		_	_	_	—	—	_	_	_	_	_	—	—	—	0000
IFS9	0812	_	_	_	_	_	_	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	—	—	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0	>	_	— IC1IP<2:0>		—	INT0IP<2:0>		4444		
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0	>	_		IC2IP<2:0>		_	C	0MA0IP<2:0>		4444
IPC2	0844	_	U	J1RXIP<2:0	>	_	;	SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D)MA1IP<2:	0>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>				CMIP<2:0	>	_		MI2C1IP<2:0	>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	_	_	_	I	INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(OC4IP<2:0	>	_		OC3IP<2:0>		_	C)ma2IP<2:0>		4444
IPC7	084E		I	U2TXIP<2:0	>		L	J2RXIP<2:)>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850		_	_	_		_	—	—	_		SPI2IP<2:0>		_	S	SPI2EIP<2:0>		0044
IPC9	0852		_	_	_			IC4IP<2:0	>	_		IC3IP<2:0>		_	C	0MA3IP<2:0>		0444
IPC12	0858		_	_	_		N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860			CRCIP<2:0>	>			U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866		_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC35	0886			JTAGIP<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888	_		PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	_	_	—	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_				—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_				_	_		—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_		_			_	_	_	_	DAE	DOOVR	_	_	—		0000
INTCON4	08C6		_	_	_	_	_	—	_	_	_	_	_	_	_		SGHT	0000
INTTREG	08C8	_			_		ILR<	3:0>					VECN	UM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

	12. 2007.00						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-4	Unimplemen	ted: Read as '	כ'				
bit 3	RQCOL3: DN	/IA Channel 3 T	ransfer Requ	est Collision F	ag bit		
		e and interrupt est collision is d		st collision is d	etected		
h # 0	•			est Callisian Fl	aa hit		
bit 2		/IA Channel 2 T ce and interrupt	•		0		
		e and interrupt est collision is d			elecieu		
bit 1	RQCOL1: DN	/IA Channel 1 T	ransfer Requ	est Collision F	ag bit		
	1 = User for	e and interrupt	-based reque	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 0	RQCOLO: DN	/IA Channel 0 T	ransfer Requ	est Collision F	lag bit		
	1 = User force	e and interrupt	-based reque	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_		LSTC	H<3:0>	
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits			
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sir	nce system Res	set		
	•						
	•						
	•						
		rved data transfer wa data transfer wa					
		data transfer wa					

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0001 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

	REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3											
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0					
—	_	—	—	—	CMPMD	—	—					
bit 15							bit 8					
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0					
CRCMD	—	—	_	—	—	I2C2MD	—					
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			own						

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9-8	Unimplemented: Read as '0'
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled
	0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

	-						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	—	—	REFOMD	CTMUMD	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	 1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

 $\ensuremath{\textcircled{}^\circ}$ 2011-2013 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			IC2R<6:0>					
·						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			IC1R<6:0>					
						bit C		
e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'			
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	x = Bit is unknown		
•			nbers)					
		1						
Unimplemer	nted: Read as '0							
(see Table 11 1111001 = I	I-2 for input pin's nput tied to RPI1	election num 21		onding RPn Pi	n bits			
	e bit POR Unimplemen IC2R<6:0>: / (see Table 11 1111001 = I 0000001 = I 0000000 = I Unimplemen IC1R<6:0>: / (see Table 11 1111001 = I	e bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 IC2R<6:0>: Assign Input Cap (see Table 11-2 for input pin s 1111001 = Input tied to RPI1 0000001 = Input tied to CMP 0000000 = Input tied to Vss Unimplemented: Read as '0 IC1R<6:0>: Assign Input Cap (see Table 11-2 for input pin s	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) (see Table 11-2 for input pin selection num 1111001 = Input tied to RPI121	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> IC1R<6:0> e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<>		

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

				DD20			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
				RP35	iR<5:0>		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP37	′R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP36	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

REGISTER 16-14: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in local time base, this register contains the compare values that can trigger the ADC module.

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	DWIDTH<4:0	>: Data Width	Select bits				
	These bits se	t the width of th	ne data word (DWIDTH<4:0>	• + 1).		
bit 7-5	Unimplemen	ted: Read as '	0'				

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

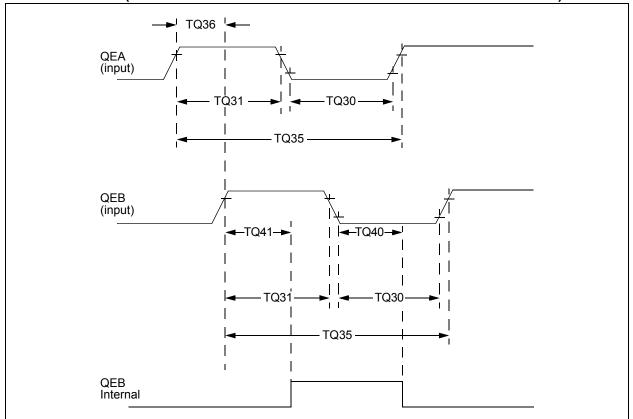

DC CHARACTI	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Parameter No.	Тур.	Max.	Units	Conditions				
Idle Current (III	dle) ⁽¹⁾							
DC40d	3	8	mA	-40°C				
DC40a	3	8	mA	+25°C	- 3.3V	10 MIPS		
DC40b	3	8	mA	+85°C	3.3V	10 101195		
DC40c	3	8	mA	+125°C]			
DC42d	6	12	mA	-40°C				
DC42a	6	12	mA	+25°C	3.3V	20 MIPS		
DC42b	6	12	mA	+85°C		20 1011-5		
DC42c	6	12	mA	+125°C				
DC44d	11	18	mA	-40°C				
DC44a	11	18	mA	+25°C	3.3V	40 MIPS		
DC44b	11	18	mA	+85°C	5.50	40 1011-3		
DC44c	11	18	mA	+125°C				
DC45d	17	27	mA	-40°C				
DC45a	17	27	mA	+25°C	- 3.3V	60 MIPS		
DC45b	17	27	mA	+85°C	3.3V			
DC45c	17	27	mA	+125°C]			
DC46d	20	35	mA	-40°C				
DC46a	20	35	mA	+25°C	3.3V	70 MIPS		
DC46b	20	35	mA	+85°C]			

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:

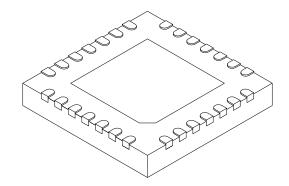
• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			TA ≤ +85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

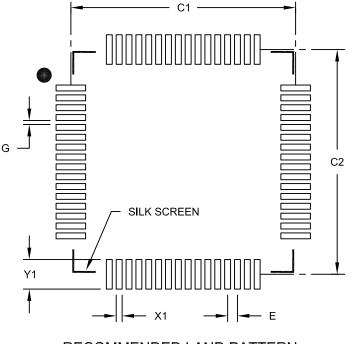
	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 $\label{eq:REF:Reference} \ensuremath{\mathsf{REF:}} \ensuremath{\mathsf{Reference}}\xspace \ensuremath{\mathsf{Dimension}}, \ensuremath{\mathsf{usually}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace, \ensuremath{\mathsf{for}}\xspace \ensuremath{\mathsf{oterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{rescale}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{$

Microchip Technology Drawing C04-124C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	MILLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1):
Controllers (up to	 PIC24EP512GP202
512-Kbyte Flash and	• PIC24EP512GP204
48-Kbyte SRAM) with High-	• PIC24EP512GP206
Speed PWM, Op amps, and Advanced Analog"	• dsPIC33EP512GP502
Advanced Analog	• dsPIC33EP512GP504
	• dsPIC33EP512GP506
	The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2):
	• PIC24EP512MC202
	• PIC24EP512MC204
	• PIC24EP512MC206
	• dsPIC33EP512MC202
	• dsPIC33EP512MC204
	• dsPIC33EP512MC206
	• dsPIC33EP512MC502
	• dsPIC33EP512MC504
	• dsPIC33EP512MC506
	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.
Section 4.0 "Memory	Added a Program Memory Map for the new 512-Kbyte devices (see Figure 4-4).
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-11).
	Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-16).
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".
Section 27.0 "Special Features"	The following modifications were made to the Configuration Byte Register Map (see Table 27-1):
	 Added the column Device Memory Size (Kbytes)
	Removed Notes 1 through 4
	Added addresses for the new 512-Kbyte devices
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).
	Updated the Minimum value for Parameter CM34 (see Table 30-53).
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).

TyCON (Timer3 and Timer5 Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
VEL1CNT (Velocity Counter 1)	259
Resets	123
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	123
Illegal Condition Reset (IOPUWR)	123
Illegal Opcode	123
Security	
Uninitialized W Register	123
Master Clear (MCLR) Pin Reset	123
Power-on Reset (POR)	
RESET Instruction (SWR)	
Resources	
Trap Conflict Reset (TRAPR)	123
Watchdog Timer Time-out Reset (WDTO)	123
Resources Required for Digital PFC	32, 34
Revision History	

S

Serial Peripheral Interface (SPI) Software Stack Pointer (SSP)	
Special Features of the CPU	
SPI	
Control Registers	268
Helpful Tips	267
Resources	267

т

Temperature and Voltage Specifications
AC
Thermal Operating Conditions
Thermal Packaging Characteristics
Timer1
Control Register
Resources
Timer2/3 and Timer4/5
Control Registers
Resources
Timing Diagrams
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,
SSRCG = 0)
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,
SSRCG = 0, SAMC<4:0> = 00010)
12-Bit ADC Conversion (ASAM = 0,
SSRC<2:0> = 000, SSRCG = 0)
BOR and Master Clear Reset
ECANx I/O
External Clock414
High-Speed PWMx Fault422
High-Speed PWMx Module
I/O Characteristics
I2Cx Bus Data (Master Mode)450
I2Cx Bus Data (Slave Mode)
I2Cx Bus Start/Stop Bits (Master Mode)
I2Cx Bus Start/Stop Bits (Slave Mode)

Input Capture x (ICx)	. 420
OCx/PWMx	
Output Compare x (OCx)	. 421
QEA/QEB Input	. 424
QEI Module Index Pulse	. 425
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 441
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 440
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 438
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 439
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 448
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 446
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 442
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	. 444
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 429
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 428
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	426
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 427
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 436
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 434
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 430
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
TimerQ (QEI Module) External Clock	
UARTx I/O	454

U

Universal Asynchronous Receiver	
Transmitter (UART)	. 281
Control Registers	. 283
Helpful Tips	. 282
Resources	. 282
User ID Words	. 384
V	
Voltage Regulator (On-Chip)	. 384

w

Watchdog Timer (WDT)	379, 385
Programming Considerations	385
WWW Address	524
WWW, On-Line Support	23