

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc204-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned or mixed-sign DSP multiply (US)
- · Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	SOMMAN	
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN		PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	—	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	PTGCLK<2:0> PTGDIV<4:0> PTGPWD<3:0> — PTGWDT<2:0>							0>	0000								
PTGBTE	0AC4	ADCTS<4:1> IC4TSS IC3TSS IC2TSS IC1TSS OC4CS OC3CS OC2CS OC1CS OC4TSS OC3TSS OC2TSS OC1TSS							OC1TSS	0000								
PTGHOLD	0AC6		PTGHOLD<15:0>							0000								
PTGT0LIM	0AC8		PTGT0LIM<15:0>								0000							
PTGT1LIM	0ACA								PTGT1LIN	1<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	1<15:0>								0000
PTGC0LIM	0ACE		PTGC0LIM<15:0>								0000							
PTGC1LIM	0AD0								PTGC1LIN	1<15:0>								0000
PTGADJ	0AD2								PTGADJ•	<15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	_	_	_	_	_	_	_	_	_	_	_		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	21<7:0>							STEPO)<7:0>				0000
PTGQUE1	0ADA				STEP	93<7:0>							STEP2	2<7:0>				0000
PTGQUE2	0ADC				STEP	95<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP	7<7:0>							STEP6	6<7:0>				0000
PTGQUE4	0AE0	STEP9<7:0>									STEP8	3<7:0>				0000		
PTGQUE5	0AE2	STEP11<7:0>						STEP10<7:0>						0000				
PTGQUE6	0AE4	STEP13<7:0>						STEP12<7:0>						0000				
PTGQUE7	0AE6		STEP15<7:0>							STEP14<7:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	_	_	_	_	_	_	NVMOP<3:0>				0000
NVMADRL	072A	A NVMADR<15:0>											0000					
NVMADRH	072C		_	_	_	_		_		NVMADR<23:16>						0000		
NVMKEY	072E	_	_		_	_	_	_	_	NVMKEY<7:0> 0						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_		VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	(COSC<2:0>				NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI	[DOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOST<1:0> — PLLPRE<4:0>					0030			
PLLFBD	0746	_	_	_			_	—	PLLDIV<8:0>					0030				
OSCTUN	0748	_	_	_	_	_	_	_	TUN<5:0>					0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	_	ROSSLP	ROSEL	RODIV<3:0>			_	—		-	-	-		—	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XBREVx value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
OA	OB	SA	SB	OAB	SAB	DA	DC	
bit 15							bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С	
bit 7						-	bit 0	
								1

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		-
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	_	_	—	—	—
bit 15		·			·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0
bit 7		•			·		bit 0
Legend:		S = Settable b	oit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15	FORCE: Forc	e DMA Transfe	er bit ⁽¹⁾				
	1 = Forces a	single DMA tra	insfer (Manua	l mode)			
	0 = Automati	c DMA transfer	initiation by D	MA request			
bit 14-8	Unimplemen	ted: Read as '	י)				
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Numl	ber Select bits			
	01000110 =	ECAN1 – TX D	ata Request ⁽²	2)			
	00100110 =	IC4 – Input Caj	oture 4				
	00100101 =	IC3 – Input Ca	oture 3				
	00100010 =	ECAN1 – RX D	ata Ready ⁽²⁾				
	00100001 = 3	SPIZ Transfer I	Jone NDT2 Transmi	ittor			
	00011111 =	UART2RX - U		ar			
	0001110 = 00011100 = 000011100 = 000011000 = 00000000	TMR5 – Timer	5				
	00011011 =	TMR4 – Timer4	1				
	00011010 =	OC4 – Output	Compare 4				
	00011001 =	OC3 – Output (Compare 3				
	00001101 =	ADC1 – ADC1	Convert done	•			
	00001100 =	UART1TX – U/	ART1 Transm	itter			
	00001011 =	UART1RX – U	ART1 Receive	er			
	00001010 =	SPI1 – Transfe	r Done				
	00001000 =	TMR3 – Timera	3				
	00000111 =	100RZ - 100RZ	<u>Compore 2</u>				
	00000110 = 0	IC2 – Duipui V	oture 2				
	00000101 = 0	OC1 = Outout 0	Compare 1				
	00000001 =	IC1 – Input Ca	oture 1				
	00000000 =	INT0 – Externa	I Interrupt 0				

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽¹⁾	—	TSIDL	—	_	—	—	—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0					
	TGATE	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—					
bit 7							bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
		(1)										
bit 15	TON: Timer1	On bit ⁽¹⁾										
	1 = Starts 16-	bit Limer1 bit Timer1										
bit 1/	Unimplement	ted: Pead as '	ı'									
bit 13		1 Stop in Idle N	/ode hit									
DIC 15	1 = Discontinu	i stop in lae k	eration when a	device enters l	dle mode							
	0 = Continues	module opera	tion in Idle mo	ode								
bit 12-7	Unimplement	ted: Read as ')'									
bit 6	TGATE: Time	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS =	<u>1:</u> prod										
	When TCS =	0. 0.										
	1 = Gated tim	<u>e</u> accumulatior	n is enabled									
	0 = Gated tim	e accumulatior	n is disabled									
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits								
	11 = 1:256											
	10 = 1:64 01 = 1:8											
	01 = 1.0 00 = 1.1											
bit 3	Unimplement	ted: Read as ')'									
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	chronization Se	elect bit ⁽¹⁾							
	When TCS =	1:										
	1 = Synchroni	izes external cl	ock input									
	0 = Does not	synchronize ex	ternal clock in	nput								
	This bit is jand	<u>ored</u> .										
bit 1	TCS: Timer1 (Clock Source S	Select bit ⁽¹⁾									
	1 = External c	lock is from pir	n, T1CK (on th	ne rising edge)								
	0 = Internal cl	ock (FP)		5 5-7								
bit 0	Unimplement	ted: Read as ')'									
Note 1: \	When Timer1 is en attempts by user so	abled in Exterr oftware to write	al Synchrono to the TMR1	us Counter mo register are ig	ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any					

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

NOTES:

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB
bit 15							bit 8
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Reada	ble bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	OCSIDL: Out	put Compare x	Stop in Idle Mo	de Control bit			
	1 = Output C	ompare x Halts	in CPU Idle me	ode vin CBUUdio m	odo		
hit 12₋10			nare v Clock S	ellect hits	oue		
511 12-10	111 = Periph	eral clock (FP)					
	110 = Reserv	/ed					
	101 = PTGO	x clock ⁽²⁾					
	100 = T1CLK	is the clock sou	urce of the OC	x (only the sync	chronous clock	is supported)	
	010 = T4CLK	is the clock so	urce of the OC	^ K			
	001 = T3CLK	is the clock sou	urce of the OC:	ĸ			
	000 = T2CLK	is the clock sou	urce of the OC:	x			
bit 9	Unimplemen	ted: Read as '0)'				
bit 8	ENFLTB: Fau	ult B Input Enab	le bit				
	1 = Output C 0 = Output C	ompare Fault B	input (OCFB)	is enabled			
bit 7	FNFI TA: Fau	ult A Input Enab	le hit				
Sit 1	1 = Output C	ompare Fault A	input (OCFA)	is enabled			
	0 = Output C	ompare Fault A	input (OCFA)	is disabled			
bit 6	Unimplemen	ted: Read as '0	1				
bit 5	OCFLTB: PW	/M Fault B Cond	dition Status bit	:			
	1 = PWM Fa	ult B condition of	on OCFB pin ha	as occurred			
	0 = No PWM	Fault B condition	on on OCFB pi	n has occurred			
bit 4	OCFLTA: PW	/M Fault A Cond	dition Status bit				
	1 = PWMFa 0 = NoPWM	ult A condition o	on OCFA pin ha on OCFA pi	as occurred			
Note 1:	OCxR and OCxF	RS are double-b	uffered in PWN	A mode only.			
2:	Each Output Cor	mpare x module	(OCx) has one	e PTG clock sou	urce. See Secti	on 24.0 "Perip	oheral Trigger
	PTGO4 = OC1			ni.			
	PTGO5 = OC2						
	PTGO6 = OC3						
	PIGO7 = OC4						

FIGURE 18-1: SPIx MODULE BLOCK DIAGRAM

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

etching etching
rating as I ² C master, applicable during master receive)
e initiates an Acknowledge sequence.
bit during master receive)
DAx and SCLx pins and transmits ACKDT data bit. Hardware owledge sequence. ress
g as I ² C master)
are is clear at the end of the eighth bit of the master receive
$rating as 1^2 C$ master)
SCLx pins. Hardware is clear at the end of the master Stop
$\frac{1}{2}$
Not (when operating as I-C master)
SDAX and SCLX pins. Hardware is clear at the end of the
erating as I ² C master)
SCLx pins. Hardware is clear at the end of the master Start

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

20.1 UART Helpful Tips

- 1. In multi-node, direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

- "UART" (DS70582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 2	5-3: CM4C	ON: COMPA	RATOR 4 CO	ONTROL RE	GISTER			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
CON	COE	CPOL	_		_	CEVT	COUT	
bit 15							bit 8	
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
EVPOL1	EVPOL0		CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾	
bit 7	•		1				bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown	
bit 15	CON: Compa	rator Enable bi	t					
	1 = Comparat	tor is enabled						
	0 = Comparat	tor is disabled						
bit 14	COE: Compa	rator Output Er	hable bit					
	1 = Comparat	tor output is pre	esent on the C	xOUT pin				
bit 12		or output is inte	elliai Ulliy Dolority Soloot	hit				
DIL 13	1 = Comparat	tor output is inv		DI				
	0 = Comparat	tor output is not	t inverted					
bit 12-10	Unimplemen	ted: Read as '	כ'					
bit 9	CEVT: Compa	arator Event bit						
	1 = Compara	tor event acco	ording to EVF	POL<1:0> sett	ings occurred;	disables future	triggers and	
	interrupts	s until the bit is	cleared					
hit 0		areter Output h						
DILO	When CPOL	= 0 (non-invert	nt ad polarity):					
	1 = VIN + > VII	<u>- 0 (11011-1117C110</u> N-	cu polanty).					
	0 = VIN + < VII	N-						
	When CPOL	= 1 (inverted po	olarity):					
	1 = VIN + < VII	N-						
bit 7-6		• Trigger/Event		arity Salact hits	e			
bit 7-0	11 = Trigger/e	event/interrupt	denerated on	any change of	, f the comparato	r output (while (CEVT = 0	
	10 = Trigger/e output (v	event/interrupt g while CEVT = 0	generated only)	on high-to-low	v transition of the	e polarity selecte	ed comparator	
	$\frac{\text{If CPOL} = 1 \text{ (inverted polarity):}}{\text{Low-to-high transition of the comparator output.}}$							
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.							
	01 = Trigger/e output (v	event/interrupt g while CEVT = 0	generated only)	on low-to-high	transition of the	e polarity selecte	ed comparator	
	If CPOL High-to-	= 1 (inverted p low transition o	olarity): f the compara	ator output.				
	<u>If CPOL</u> Low-to-t	= 0 (non-inver	ted polarity): of the compara	ator output.				
	00 = Trigger/e	event/interrupt	generation is	disabled				
				(1.1.1.) / O	() (() () () () () () () () () () () () () ()			

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

AC CHARA	CTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 30-42			0,1	0,1	0,1		
10 MHz	—	Table 30-43	—	1	0,1	1		
10 MHz	—	Table 30-44	—	0	0,1	1		
15 MHz	—	—	Table 30-45	1	0	0		
11 MHz	—	—	Table 30-46	1	1	0		
15 MHz	_	_	Table 30-47	0	1	0		
11 MHz	_	_	Table 30-48	0	0	0		

TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extend} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.			Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency		_	11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Max	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	1400	2500	μΑ	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)	
HDC61c	15	—	μA	+150°C	3.3V	Watchdog Timer Current: ∆IWDT (Notes 2, 4)	

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Max	Units	Conditions			
HDC44e	12	30	mA	+150°C	3.3V	40 MIPS	

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions			
HDC20	9	15	mA	+150°C 3.3V 10 MIPS			
HDC22	16	25	mA	+150°C 3.3V 20 MIPS			
HDC23	30	50	mA	+150°C 3.3V 40 MIPS			

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Parameter No.	Typical	Мах	Doze Ratio	Units	Conditions		
HDC72a	24	35	1:2	mA			
HDC72f ⁽¹⁾	14	—	1:64	mA	+150°C	3.3V	40 MIPS
HDC72g ⁽¹⁾	12	_	1:128	mA			

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

NOTES: