

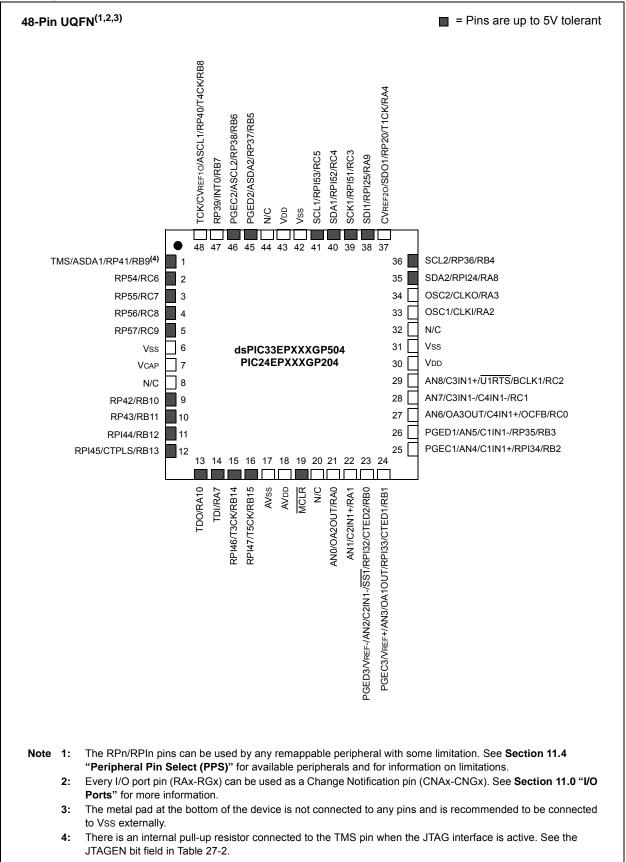
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc204-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	τу.				VELEN							DEVICE						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	-		_	—	_	_	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF		_	_	_	—	—	_	_	_	_	_	—	—	—	0000
IFS9	0812	_	_	_	_	_	_	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	—	—	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0	>	_		IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0	>	_		IC2IP<2:0>		_	C	0MA0IP<2:0>		4444
IPC2	0844	_	U	J1RXIP<2:0	>	_	;	SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D)MA1IP<2:	0>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>				CMIP<2:0	>	_		MI2C1IP<2:0	>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	—	_	_	I	INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(OC4IP<2:0	>	_		OC3IP<2:0>		_	C)ma2IP<2:0>		4444
IPC7	084E		1	U2TXIP<2:0	>		L	J2RXIP<2:)>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850		_	_	_		_	—	—	_		SPI2IP<2:0>		_	S	SPI2EIP<2:0>		0044
IPC9	0852		_	_				IC4IP<2:0	>	_		IC3IP<2:0>		_	C	0MA3IP<2:0>		0444
IPC12	0858		_	_			N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860			CRCIP<2:0>	>			U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866		_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC35	0886			JTAGIP<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888	_		PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	_	_	—	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_				—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_				_	_		—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_			_	_	_	_	DAE	DOOVR	_	_	—		0000
INTCON4	08C6		_	_	_	_	_	—	_	_	_	_	_	_	_		SGHT	0000
INTTREG	08C8	_			_		ILR<	3:0>					VECN	UM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR	—	_	VREGSF	—	CM	VREGS
bit 15							bit 8
		DANIO	DAA/ O	DAMA	DAMO		
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
							bit (
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15	•	Reset Flag bit					
		onflict Reset ha onflict Reset ha		d			
bit 14	•	gal Opcode or			et Flag bit		
		I opcode detec			•	lized W registe	er used as ar
		Pointer caused					
	-	l opcode or Uni		egister Reset h	as not occurred	d	
bit 13-12	-	ted: Read as '			. 1.9		
bit 11		ash Voltage Reg Itage regulator i			p bit		
		ltage regulator (•	ing Sleep		
bit 10		ted: Read as '	-	,,	5		
bit 9	CM: Configur	ation Mismatch	Flag bit				
	1 = A Configu	uration Mismatc uration Mismatc	h Reset has				
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	•	egulator is active egulator goes in	•	•	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res Clear (pin) Res					
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
		instruction has instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is di						
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co SWDTEN bit settir	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾				
bit 15							bit 8				
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾			OSWEN				
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR						
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'								
bit 15	-	ted: Read as									
bit 14-12		Current Oscill			/)						
		C Oscillator (F C Oscillator (F									
		101 = Low-Power RC Oscillator (LPRC) 100 = Reserved									
		011 = Primary Oscillator (XT, HS, EC) with PLL									
		010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)									
		C Oscillator (F C Oscillator (F		le-by-N and Pl	LL (FRCPLL)						
bit 11		ted: Read as	,								
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)							
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n							
		C Oscillator (F		le-by-16							
		ower RC Oscil	ator (LPRC)								
	100 = Reserv	/ed y Oscillator (X									
		y Oscillator (X		IFLL							
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)						
		C Oscillator (F		,	,						
bit 7		Clock Lock Ena									
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and				
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified					
bit 6		 0 = Clock and PLL selections are not locked, configurations may be modified IOLOCK: I/O Lock Enable bit 									
	1 = I/O lock is	s active									
	0 = I/O lock is	s not active									
bit 5	LOCK: PLL L	ock Status bit	(read-only)								
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled					
Note 1:	Writes to this regis						ʻdsPIC33/				
2:	Direct clock switch This applies to cloo mode as a transitio	es between ar ck switches in	y primary osci either directior	llator mode wi n. In these inst	th PLL and FRC ances, the appli	PLL mode are					
0	This bit should only										

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾						
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>						
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal						
	 0 = Counter direction is positive unless modified by external up/down signal 						
bit 2	GATEN: External Count Gate Enable bit						
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation 						
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits						
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected 						
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.						

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TERR	CNT<7:0>				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		RERR	CNT<7:0>				
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
= Value at POR '1' = Bit is set '0' = Bit is cleared x				x = Bit is unkr	nown		
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'	

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet. refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows the ADC module to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

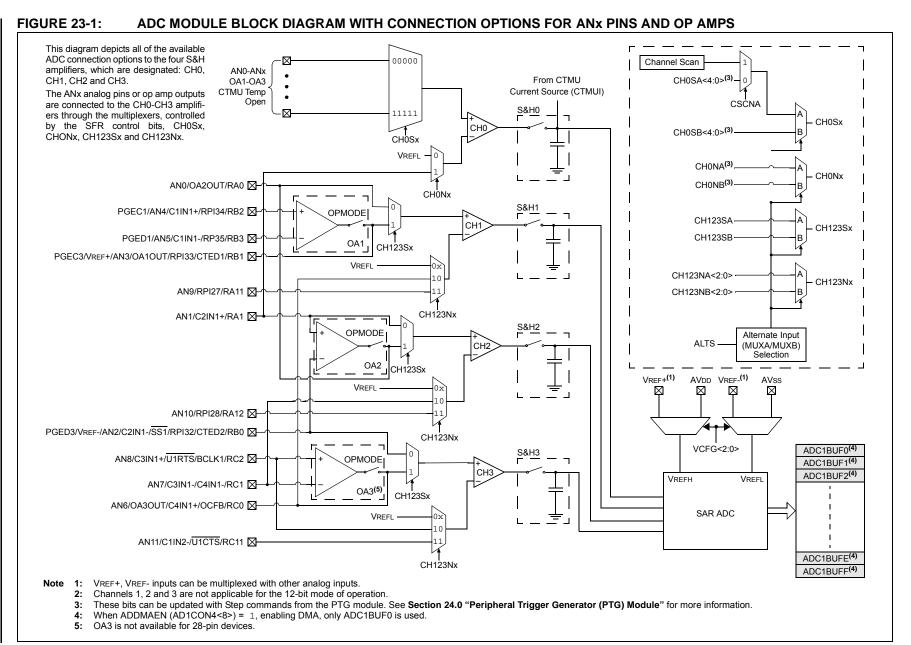
Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode
- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable conversion Trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes


23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

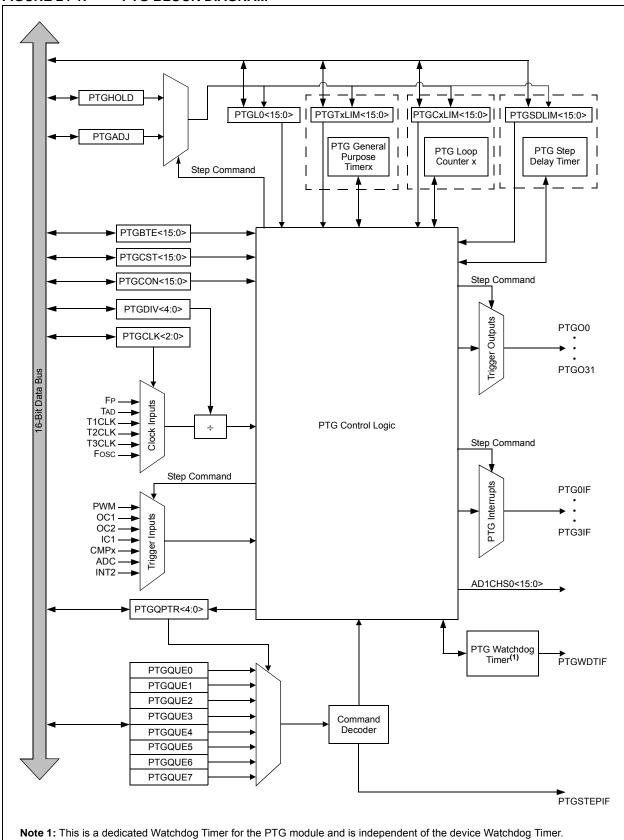
A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".


23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

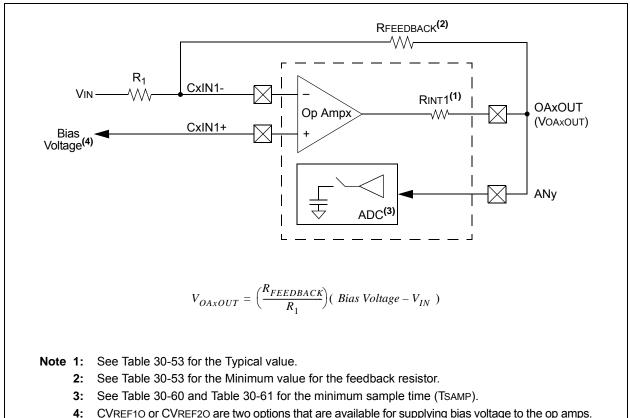
23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected	
25	DAW	DAW Wn Wn		Wn = decimal adjust Wn	1	1	С	
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z	
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z	
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z	
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z	
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z	
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z	
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None	
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV	
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV	
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV	
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV	
30	DIVF	DIVF	Wm , Wn ⁽¹⁾	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV	
31	DO	DO	#lit15,Expr ⁽¹⁾	Do code to PC + Expr, lit15 + 1 times	2	2	None	
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None	
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB	
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB	
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None	
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С	
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С	
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С	
38	GOTO	GOTO	Expr	Go to address	2	4	None	
		GOTO	Wn	Go to indirect	1	4	None	
		GOTO.L	Wn	Go to indirect (long address)	1	4	None	
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z	
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z	
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z	
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z	
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z	
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z	
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z	
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z	
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z	
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z	
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z	
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA	
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z	
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z	
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z	
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z	
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z	
45	MAC	MAC	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB	
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS			(unless othe	•	s: 3.0V to 3.6V ≤ Ta ≤ +85°C for Indi ≤ Ta ≤ +125°C for Ex			
Parameter No.	Тур.	Max.	Units	Conditions				
Operating Current (IDD) ⁽¹⁾								
DC20d	9	15	mA	-40°C				
DC20a	9	15	mA	+25°C	3.3V	10 MIPS		
DC20b	9	15	mA	+85°C	3.3V	10 1011-5		
DC20c	9	15	mA	+125°C				
DC22d	16	25	mA	-40°C		20 MIPS		
DC22a	16	25	mA	+25°C	3.3∨			
DC22b	16	25	mA	+85°C	3.3V			
DC22c	16	25	mA	+125°C				
DC24d	27	40	mA	-40°C				
DC24a	27	40	mA	+25°C	3.3V	40 MIPS		
DC24b	27	40	mA	+85°C	3.3V			
DC24c	27	40	mA	+125°C				
DC25d	36	55	mA	-40°C				
DC25a	36	55	mA	+25°C	3.3V	60 MIPS		
DC25b	36	55	mA	+85°C	3.3V	OU IVIIPS		
DC25c	36	55	mA	+125°C	7			
DC26d	41	60	mA	-40°C				
DC26a	41	60	mA	+25°C	3.3V	70 MIPS		
DC26b	41	60	mA	+85°C				

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

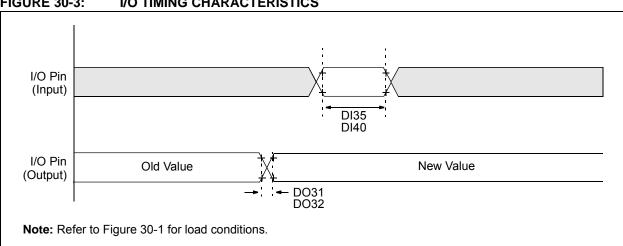
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
					Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—
DO20A	Von1	Output High Voltage	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		4x Source Driver Pins ⁽²⁾	2.0 ⁽¹⁾	_	—		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0(1)		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage	1.5 ⁽¹⁾	—	—	V	$IOH \geq -22 mA, VDD = 3.3 V$	
		8x Source Driver Pins ⁽³⁾	2.0 ⁽¹⁾	—	—		IOH \geq -18 mA, VDD = 3.3V	
			3.0(1)	—	—	1	IOH \geq -10 mA, VDD = 3.3V	

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

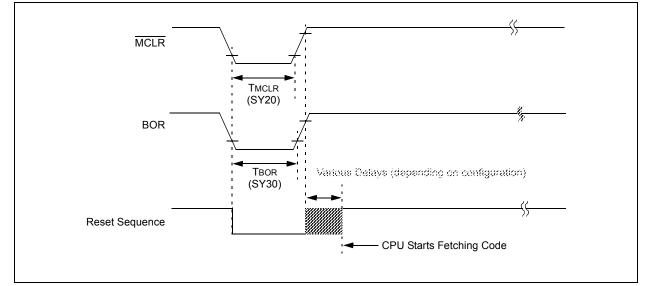

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

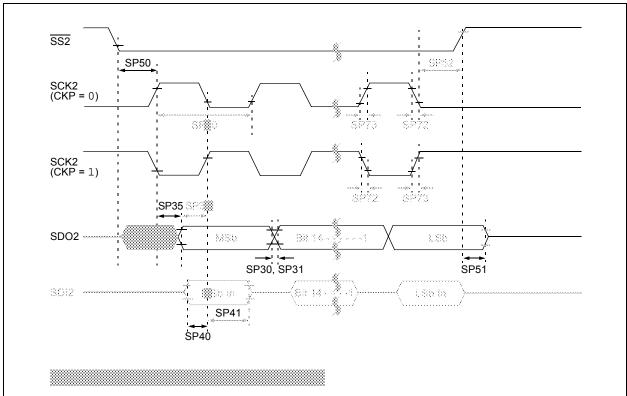
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \mbox{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.


FIGURE 30-3: I/O TIMING CHARACTERISTICS


TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				+85°C for Industrial
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time		5	10	ns	
DO32	TIOF	Port Output Fall Time	_	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	_	_	Тсү	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating te	erwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. ⁽²⁾ Max. Unit		Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).

NOTES: