

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	1	ST	No	UART2 Clear-To-Send.
U2RTS	0		No	UART2 Ready-To-Send.
U2RX	I.	ST	Yes	UART2 receive.
U2TX	Ó	_	Yes	UART2 transmit.
BCLK2	Ō	ST	No	UART2 IrDA [®] baud clock output.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	No	SPI1 data in.
SDO1	0	—	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS ⁽⁵⁾	Ι	ST	No	JTAG Test mode select pin.
TCK	I	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	_	No	JTAG test data output pin.
C1RX ⁽²⁾	I	ST	Yes	ECAN1 bus receive pin.
C1TX ⁽²⁾	0	_	Yes	ECAN1 bus transmit pin.
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	I	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾	I	ST	No	PWM Fault Inputs 3 and 4.
FLT32 ^(1,3)	I	ST	No	PWM Fault Input 32 (Class B Fault).
DTCMP1-DTCMP3 ⁽¹⁾	I	ST	Yes	PWM Dead-Time Compensation Inputs 1 through 3.
PWM1L-PWM3L ⁽¹⁾	0	—	No	PWM Low Outputs 1 through 3.
PWM1H-PWM3H ⁽¹⁾	0	—	No	PWM High Outputs 1 through 3.
SYNCI1 ⁽¹⁾	I	ST	Yes	PWM Synchronization Input 1.
SYNCO1 ⁽¹⁾	0	—	Yes	PWM Synchronization Output 1.
INDX1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Index1 pulse input.
HOME1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home1 pulse input.
QEA1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
(4)				external clock/gate input in Timer mode.
QEB1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer
				external clock/gate input in Timer mode.
CNTCMP1''	υ	—	Yes	Quadrature Encoder Compare Output 1.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 4	4-9:	INPU		URE 1 T	HROUG	SH INPU	IT CAPI	URE 4	REGIST	ER MA	Р							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL		CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D
IC1BUF	0144							Inp	ut Capture	1 Buffer Re	gister							xxxx
IC1TMR	0146								Input Cap	ture 1 Time	r							0000
IC2CON1	0148	_	—	ICSIDL		CTSEL<2:0	>	_	—	_	ICI<'	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2CON2	014A	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D
IC2BUF	014C							Inp	ut Capture	2 Buffer Re	gister							xxxx
IC2TMR	014E								Input Cap	ture 2 Time	r							0000
IC3CON1	0150	_	—	ICSIDL		CTSEL<2:0	>	_	—	_	ICI<'	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152	_	—	_	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D
IC3BUF	0154							Inp	ut Capture	3 Buffer Re	gister							xxxx
IC3TMR	0156								Input Cap	ture 3 Time	r							0000
IC4CON1	0158	_	_	ICSIDL	I	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	_	_		—	_	—	_	IC32	ICTRIG	TRIGSTAT	_		S	/NCSEL<4	:0>		000D
IC4BUF	015C		•	•	•	•	•	Inp	ut Capture	4 Buffer Re	gister	•	•					xxxx
IC4TMR	015E								Input Cap	ture 4 Time	r							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	-	—	TRISA1	TRISA0	1F93
PORTA	0E02	_	_	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	_	_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	_	_	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	_	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	_	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	—	ANSA12	ANSA11	—	_	_	—		—	ANSA4	-	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_		—	_	ANSB8		—	-		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15		LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	_	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		-	-	—	ANSC11	_		_	—	—	_		_	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00		—	—			TRISA10	TRISA9	TRISA8	TRISA7			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	0E02		—	_			RA10	RA9	RA8	RA7			RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04		—	—	-	-	LATA10	LATA9	LATA8	LATA7	_	-	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		—	—			CNIEA10	CNIEA9	CNIEA8	CNIEA7			CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	-	—	—	—	—	—	—	ANSB8	-	—	-	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	—	—	—	—	—	-	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	0E22	—	_	—	—	—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	—	—	—	—	—		LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	—	—	—	—	—	-	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	_	_	_	_	_	_	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	_	_	_	_	_	_	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	_	_	_	_	_	_		_		_	_	_	ANSC2	ANSC1	ANSC0	0007

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	То	protec	t	agains	st	misal	lign	ed	st	ack
	acc	esses,	W	15<0>	is	fixed	to	'0'	by	the
	hard	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

		11.0	11.0		11.0		
		0-0	0-0	VREGSE	0-0		VREGS
hit 15		—		VREGGE	—	Civi	bit 8
bit 10							bit 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7						.1	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	$1 = A \operatorname{Trap} Co$	onflict Reset ha	s occurred	d			
hit 11			s not occurre		ot Elog bit		
DIL 14	1 = An illega	l oncode deter	viinniiaiizeu	v Access Res	et Flay Dit ode or Uninitial	lized W registe	er used as an
	Address	Pointer caused	a Reset			ized w regiote	
	0 = An illegal	l opcode or Uni	nitialized W r	egister Reset h	as not occurred	t	
bit 13-12	Unimplemen	ted: Read as 'o)'				
bit 11	VREGSF: Fla	ish Voltage Reg	ulator Stand	by During Slee	p bit		
	1 = Flash vol	tage regulator i	s active durir	ng Sleep			
bit 10		tage regulator (naby mode dui	ing Sleep		
bit Q	CM: Configur	ation Mismatch	, Elac bit				
bit 5	1 = A Configur	ration Mismatch	h Reset has	occurred			
	0 = A Configu	ration Mismatc	h Reset has	not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit			
	1 = Voltage r	egulator is activ	e during Sle	ер			
	0 = Voltage r	egulator goes in	nto Standby i	mode during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	\perp = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not or	rea ccurred			
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
	1 = A reset	instruction has	been execut	ed			
	0 = A RESET	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is er	nabled					
bit 4		ISADIEU hdog Timor Tim	o out Elog b	:+			
DIL 4	1 = WDT time		e-oul Flay D	IL			
	0 = WDT time	e-out has not oc	curred				
Note 1.	All of the Peset sta	itus hits can bo	set or cleare	d in software S	Setting one of th	ese hits in soft	vara does not
	cause a device Re	set.					
2:	If the FWDTEN Co SWDTEN bit settin	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	less of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimplei	mented bit read	d as '0'	

•••			-		
-n =	= Value at POR	'1' = Bit is set	'0' =	Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	' OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	—	_	_	_	—
bit 15		L	I	4			bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7	POR Unimplemen	<pre>'1' = Bit is set ted: Read as '0</pre>	0'	ʻ0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11-	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin)' al Interrupt 2 (selection nun	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	ared	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	OR Unimplemen INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '(Assign Externa -2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI put tied to CMI put tied to Vss	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr	iown

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_		_				_	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				T2CKR<6:0>				
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable I	bit	U = Unimplem	plemented bit, read as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as 'o)'					
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11	ted: Read as '(: Assign Timer2 -2 for input pin)' 2 External Clo selection nur	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	ie Correspondii	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as ' : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Cle selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as 'c : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	le Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir 0000001 = Ir 0000000 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI nput tied to CMI nput tied to Vss)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				SCK2INR<6:0	>						
bit 15	·						bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				SDI2R<6:0>							
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown				
1.11.4 F			- ¹								
DIT 15	Unimpleme	Unimplemented: Read as '0'									
bit 14-8	SCK2INR<6 (see Table 1	SCK2INR<6:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)									
	1111001 =	Input tied to RPI	121								
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input fied to Vss									
bit 7	Unimpleme	nted: Read as	0'								
bit 6-0	SDI2R<6:0> (see Table 1	 Assign SPI2 D 1-2 for input pin 	ata Input (SE selection nur	012) to the Corre nbers)	esponding RP	n Pin bits					
	1111001 =	Input tied to RPI	121								
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input tied to Vss									

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				·	-		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SS2R<6:0>			
bit 7	<u>.</u>						bit 0
Logondi							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB			
bit 15					• •		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x			
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA			
bit 7							bit 0			
Legend:	a hit	\// - \//ritabla	h it	II – Unimploy	monted bit read	4 a.a. (0)				
n - Value at		vv = vvii(able	DIL	$0^{\circ} = 0$	nented bit, read	v – Ritic unkn				
		1 - Dit 13 36t			areu					
bit 15	OCAPEN: OF	-I Position Cou	nter Input Cap	ture Enable bit						
	1 = Index ma	tch event trigge	ers a position c	apture event						
	0 = Index ma	tch event does	not trigger a p	osition capture	event					
bit 14	FLTREN: QE	Ax/QEBx/INDX	x/HOMEx Digi	ital Filter Enabl	e bit					
	1 = Input pin	digital filter is e digital filter is d	nabled isabled (bypas	eed)						
hit 13_11			NDXv/HOMEv	Digital Input Fi	ilter Clock Divid	a Salact hits				
511 15-11	111 = 1:128 (clock divide		Digital Input I						
	110 = 1:64 clock divide									
	101 = 1:32 clock divide									
	100 = 1.16 clock divide 011 = 1.8 clock divide									
	010 = 1.4 clock divide									
	001 = 1:2 clo	ck divide ck divide								
hit 10₋9			Output Functi	ion Mode Sele	rt hits					
bit 10 5	11 = The CTN	VCMPx pin ace	s high when C	$EI1LEC \ge POS$	$S1CNT \ge QEI10$	GEC				
	10 = The CTM	NCMPx pin goe	s high when P	$OS1CNT \leq QE$	EIILEC					
	01 = The CTNCMPx pin goes high when POS1CNT ≥ QEI1GEC									
hit 8	SWPAB: Swa	OFA and OFA	B Innuts hit							
bit 0	1 = QEAx and	d QEBx are swa	apped prior to	quadrature de	coder logic					
	0 = QEAx and QEBx are not swapped prior to quadrature decoder logic									
bit 7	HOMPOL: HO	OMEx Input Po	larity Select bit	t						
	1 = Input is in	iverted								
hit 6		ot inverted Vy Input Dolori	ty Soloot bit							
DILO	1 = Input is in	verted	ly Select bit							
	0 = Input is no	ot inverted								
bit 5	QEBPOL: QE	EBx Input Polar	ity Select bit							
	1 = Input is ir	nverted								
L:1 4		ot inverted	:							
DIT 4		EAX Input Polar	ity Select bit							
	1 = 10000000000000000000000000000000000	not inverted								
bit 3	HOME: Statu	s of HOMEx In	out Pin After P	olarity Control						
	1 = Pin is at I	logic '1'		-						
	0 = Pin is at	logic '0'								

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit 0			
Legend:										
R = Readabl	e hit	W = Writable	hit	= Inimple	mented hit read	1 as 'N'				
-n = Value at	POR	'1' = Rit is set	bit F	$0^{\circ} = \text{Bit is clustering}$	eared	x = Bit is unk	nown			
		1 - Dit 13 3C			carca		nown			
bit 15	HLMS: High	or Low-Level	Masking Select	t bits						
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	arator signal fro	m propagating			
	0 = The masł	king (blanking)	function will pre	event any asse	erted ('1') compa	arator signal from	m propagating			
bit 14	Unimplemer	nted: Read as	'0'							
bit 13	OCEN: OR O	Gate C Input Er	nable bit							
	1 = MCI is co	onnected to OF	R gate							
	0 = MCI is no	ot connected to	OR gate							
bit 12	OCNEN: OR	Gate C Input	Inverted Enable	e bit						
	1 = Inverted	1 = Inverted MCI is connected to OR gate								
hit 11		Sate B Input Fr	neelee to on g	juic						
Sit II	1 = MBI is co	onnected to OR	aate							
	0 = MBI is no	0 = MBI is not connected to OR gate								
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit						
	1 = Inverted	MBI is connect	ed to OR gate	ie						
	0 = Inverted	0 = Inverted MBI is not connected to OR gate								
bit 9 OAEN: OR Gate A Input Enable bit										
	1 = MAI is connected to OR gate									
hit 8		U = IMAL IS NOT CONNECTED TO UK GATE								
DILO	1 = Inverted	1 = Inverted MAI is connected to OR gate								
	0 = Inverted	0 = Inverted MAI is not connected to OR gate								
bit 7	NAGS: AND Gate Output Inverted Enable bit									
	1 = Inverted ANDI is connected to OR gate									
	0 = Inverted	ANDI is not co		gate						
bit 6	PAGS: AND Gate Output Enable bit									
	0 = ANDI is r	not connected to O	to OR gate							
bit 5	ACEN: AND	Gate C Input E	Enable bit							
	1 = MCI is co	onnected to AN	ID gate							
	0 = MCI is no	ot connected to	AND gate							
bit 4	ACNEN: AN	D Gate C Input	Inverted Enat	ole bit						
	1 = Inverted	MCI is connect	ted to AND gat	te						
	0 = Inverted	IVICI IS NOT CON	nected to AND	gate						

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0			
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15							bit 8			
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, other SERs are not reset										
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit							
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
bit 12-8	VWORD<4:0	>: Pointer Valu	e bits							
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7 or 16 when PLEN<4:0> \leq 7.									
bit 7	CRCFUL: CR	CRCFUL: CRC FIFO Full bit								
	1 = FIFO is full									
	0 = FIFO is not full									
DIT 6	CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty									
bit E										
DIL S	CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC a = Interrupt on abiff is complete and CRCI//DAT recults are reactive									
hit 4	CRCGO: Start CRC bit									
	1 = Starts CRC serial shifter									
hit 2		ai shiiter is turi	Ieu Oll	nuration hit						
DIL 3	1 = Data wor	d is shifted into	the CRC sta	rting with the L	Sb (little endiar	1))				
bit 2-0		ted: Read as '	0'			/				
51120	Simplemen		0							

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial							
	i	<i>"</i>	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCK2 Frequency	—	—	9	MHz	-40°C to +125°C (Note 3)		
SP20	TscF	SCK2 Output Fall Time	_	_		ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCK2 Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_		ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30			ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30			ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A