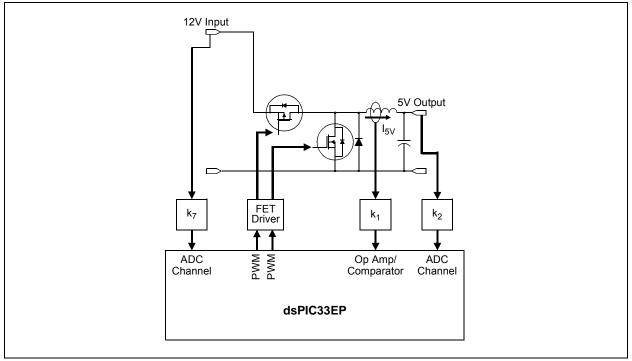


Welcome to E-XFL.COM

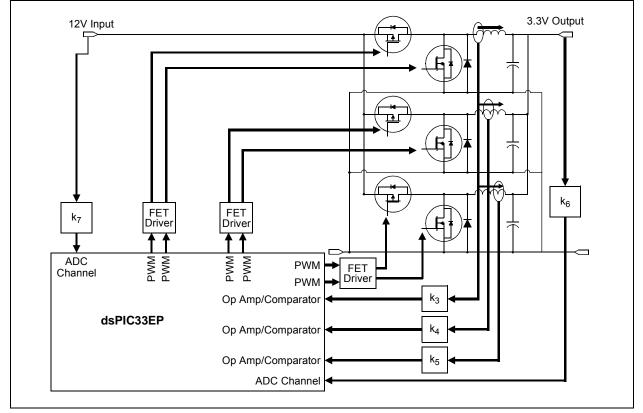
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp202-e-so


Email: info@E-XFL.COM

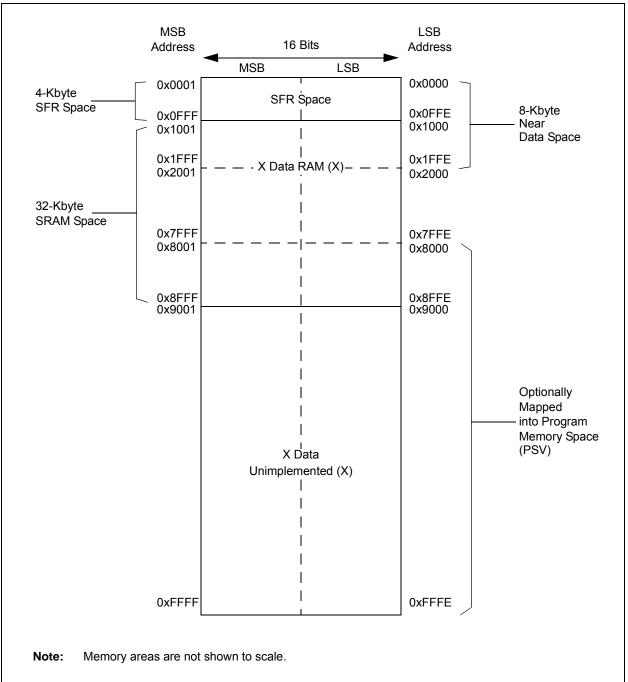

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	SDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0>				<1:0>	0000						
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	insmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	ŝ	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE<2:0> PPRE<1:0> 00						0000						
SPI2CON2	0264	FRMEN	RMEN SPIFSD FRMPOL FRMDLY SPIBEN (0000						
SPI2BUF	0268							SPI2 Tra	insmit and R	eceive Buff	er Registe	r						0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits		
External Interrupt 1	INT1	RPINR0	INT1R<6:0>		
External Interrupt 2	INT2	RPINR1	INT2R<6:0>		
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>		
Input Capture 1	IC1	RPINR7	IC1R<6:0>		
Input Capture 2	IC2	RPINR7	IC2R<6:0>		
Input Capture 3	IC3	RPINR8	IC3R<6:0>		
Input Capture 4	IC4	RPINR8	IC4R<6:0>		
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>		
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>		
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>		
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>		
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>		
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>		
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>		
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>		
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>		
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>		
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>		
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>		
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>		
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>		
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>		
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>		
PWM Dead-Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R<6:0>		

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

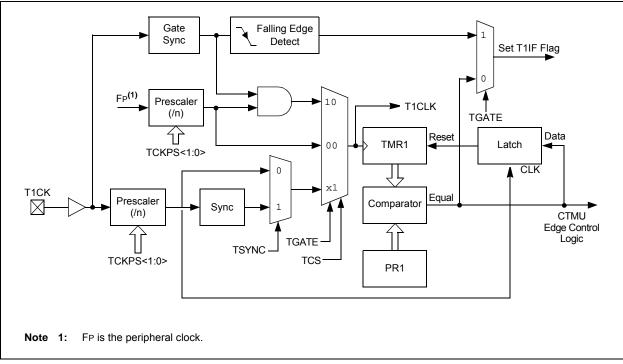
- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC				
Timer	0	0	х				
Gated Timer	0	1	x				
Synchronous Counter	1	х	1				
Asynchronous Counter	1	x	0				

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ^(1,3)	—
bit 7							bit 0

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

Legend:										
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15	TON: Tin	nery On bit ⁽¹⁾								
		s 16-bit Timery s 16-bit Timery								
bit 14	•	mented: Read as '0'								
bit 13	-	imery Stop in Idle Mode bit ⁽²	2)							
		ontinues module operation winues module operation in Id	when device enters Idle mode lle mode							
bit 12-7	Unimple	Unimplemented: Read as '0'								
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾									
	When TC This bit is	<u>CS = 1:</u> s ignored.								
		<u>CS = 0:</u> d time accumulation is enab d time accumulation is disab								
bit 5-4	TCKPS<	1:0>: Timery Input Clock Pre	escale Select bits ⁽¹⁾							
	11 = 1:2 5									
	10 = 1:64 01 = 1:8	1								
	01 = 1.8									
bit 3-2	Unimple	mented: Read as '0'								
bit 1	-	nery Clock Source Select bit	(1,3)							
		nal clock is from pin, TyCK (nal clock (FP)	(on the rising edge)							
bit 0	Unimple	mented: Read as '0'								
		peration is enabled (T2CON set through TxCON.	<3> = 1), these bits have no e	ffect on Timery operation; all ti						

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
r							
Legend:		HS = Hardware		C = Clearable			
R = Readable I		W = Writable b	bit	•	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	-	ted: Read as '0				.,	
bit 13		Position Counte	er Greater Tha	n or Equal Cor	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i						
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	ire Interrunt En	ahla hit	
	1 = Interrupt i						
	0 = Interrupt i						
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	itus bit			
	1 = Overflow						
		ow has occurred					
bit 8		Position Counte	r Overflow Inte	errupt Enable b	Dit		
	1 = Interrupt i 0 = Interrupt i						
bit 7	•	tion Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitialize	•		· · · · · · · ·		
	0 = POS1CN	T was not reiniti	alized				
bit 6	PCIIEN: Posi	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i						
bit 5	0 = Interrupt i		r Overflow Sta	tuo hit			
DIL 5	1 = Overflow	Velocity Counter	I Overnow Sta				
		ow has not occu	irred				
bit 4	VELOVIEN:	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 3		atus Flag for Ho		us bit			
		ent has occurred event has occu					

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		QEIG	EC<31:24>					
						bit 8		
	DAMO				DAMO			
R/W-U	R/W-0			R/W-U	R/W-U	R/W-0		
		QEIGE	EC<23:16>					
						bit (
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkn	x = Bit is unknown		
		W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'		

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIGE	C<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIG	EC<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

RW-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 15 bit 8 bit 8 bit 8 bit 8 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 5ID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 - - EID17 EID16 bit 0 bit 0 Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										
bit 15 bit 2 bit 3 bit 8 bit 8 bit 8 bit 7 bit 7 bit 9 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 0 bit 1 bit 9 bit 1 bit 9 bit 1 bit 1 bit 9 bit 1	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses Ignores EXIDE bit. Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID EID bit 1-0 EID Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0	bit 15	÷						bit 8		
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0										
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 1 = Message address bit, EIDx, must be '1' to match filter	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID2	SID1	SID0	_	EXIDE		EID17	EID16		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID a Matches bit, EIDx, must be '1' to match filter	bit 7							bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Message Sit, SIDE 5 bit 2 Unimplemented: Read as '0' bit 2 Unimplemented: Read as '0' bit 4 Unimplemented: Read as '0' bit 1-0 EID if MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID a Message address bit, EIDx, must be '1' to match filter										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter o = Message address bit, SIDx, must be '1' to match filter 0' = Bit is cleared x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 1 = Message address bit, EIDx, must be '1' to match filter	Legend:									
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1 f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID I= Message address bit, EIDx, must be '1' to match filter	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	bit 4	0 = Message	address bit, SI	Dx, must be '						
bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	bit 3	<u>If MIDE = 1:</u> 1 = Matches 0 = Matches <u>If MIDE = 0:</u>	only messages only messages	with Extende						
1 = Message address bit, EIDx, must be '1' to match filter	bit 2	Unimplemen	ted: Read as '	כ'						
	bit 1-0	EID<17:16>:	Extended Iden	tifier bits						
		•								

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PTGL0<15:8>									
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PTGL0<7:0>										
bit 7											

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	J = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL			f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	_{ACC} (1)	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	£	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

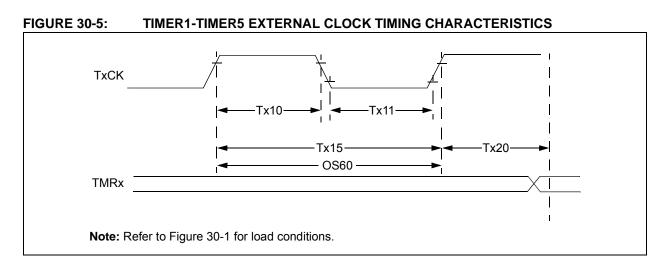

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol Characteristic						Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	3.0	—	3.6	V			
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V			
D134	TRETD	Characteristic Retention	20	_		Year	Provided no other specifications are violated, -40°C to +125°C		
D135	IDDP	Supply Current during Programming ⁽²⁾	—	10		mA			
D136	IPEAK	Instantaneous Peak Current During Start-up	—	_	150	mA			
D137a	Тре	Page Erase Time	17.7	—	22.9	ms	TPE = 146893 FRC cycles, TA = +85°C (See Note 3)		
D137b	Тре	Page Erase Time	17.5	—	23.1	ms	TPE = 146893 FRC cycles, TA = +125°C (See Note 3)		
D138a	Tww	Word Write Cycle Time	41.7	—	53.8	μs	Tww = 346 FRC cycles, TA = +85°C (See Note 3)		
D138b	Tww	Word Write Cycle Time	41.2	—	54.4	μs	Tww = 346 FRC cycles, TA = +125°C (See Note 3)		

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

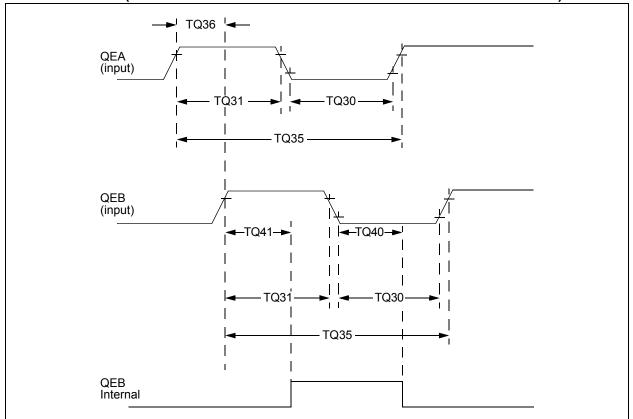


TABLE 30-23: TIME	1 EXTERNAL CLOCK TIMING REQUI	REMENTS ⁽¹⁾
-------------------	-------------------------------	------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	_	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

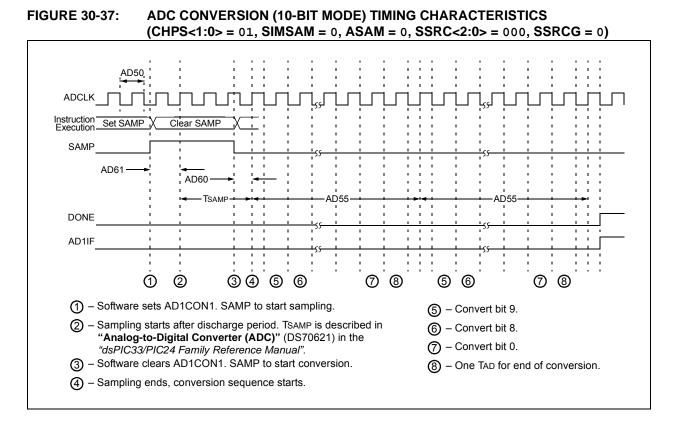
TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHA	ARACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	-	Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	_	-		ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—			ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—			ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30			ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—		50	ns	

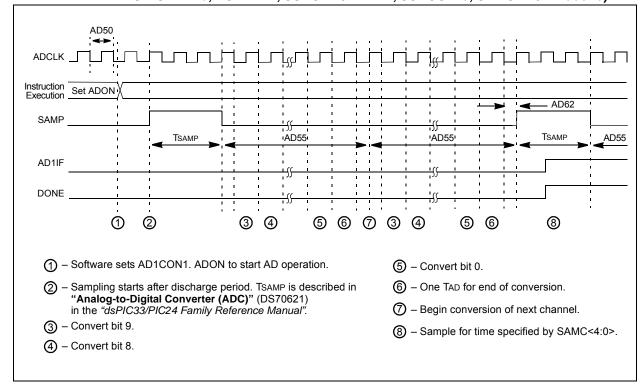
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPI2 pins.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic		Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
Op Am	p DC Chara	cteristics						
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	VCM = AVDD/2	
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV		
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	_	90	_	db		
CM44	los	Input Offset Current	_	-	_	_	See pad leakage currents in Table 30-11	
CM45	lв	Input Bias Current	_	_	_	_	See pad leakage currents in Table 30-11	
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ		
CM49a	VOADC	Output Voltage	AVss + 0.077	_	AVDD - 0.077	V	Ιουτ = 420 μΑ	
		Measured at OAx Using	AVss + 0.037	—	AVDD - 0.037	V	Ιουτ = 200 μΑ	
		ADC ^(3,4)	AVss + 0.018		AVDD - 0.018	V	Ιουτ = 100 μΑ	
CM49b	VOUT	Output Voltage	AVss + 0.210	—	AVDD - 0.210	V	Ιουτ = 420 μΑ	
		Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.100 AVss + 0.050	_	AVDD – 0.100 AVDD – 0.050	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ	
CM51	RINT1 (6)	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C	


TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

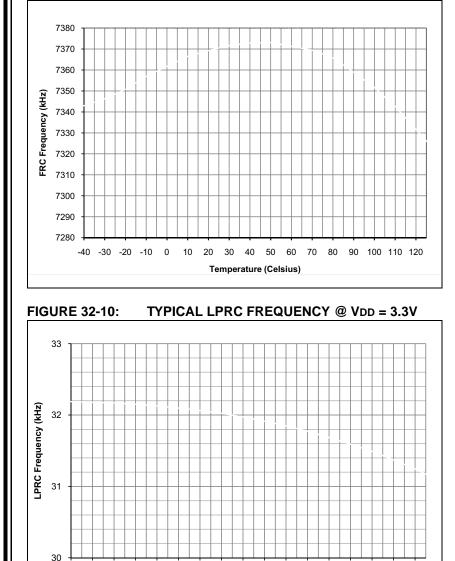

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

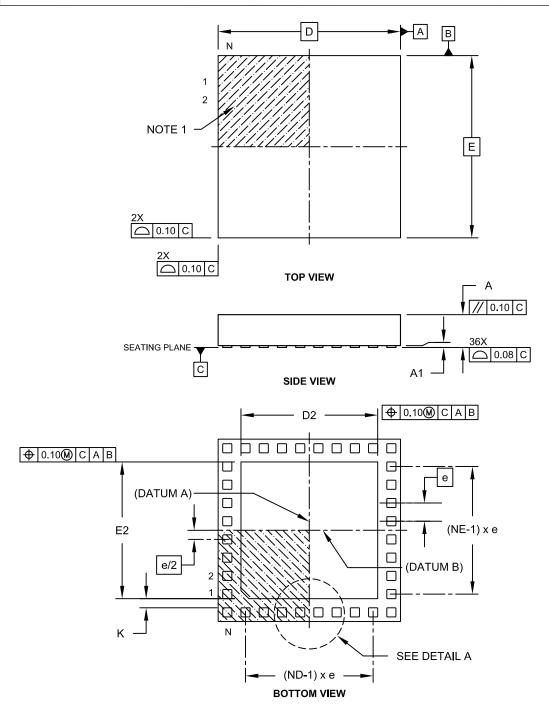
FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

DS70000657H-page 464

Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V


-40 -30 -20 -10

0 10 20 30 40 50 60

FIGURE 32-9:

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2