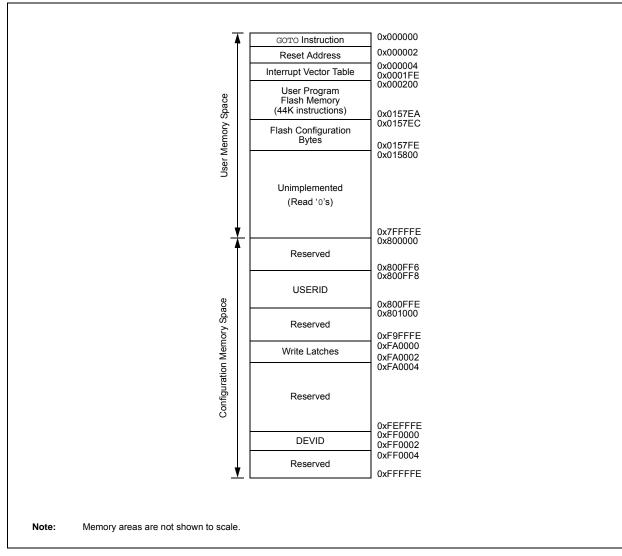


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

IABLE 4	-14:	PVVIVI G	ENERA	IUR Z R	EGIST		FOR as	PIC33EP		202/202		16246	PXXX			CES ONL	_ T	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	\T<1:0>	FLTD	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON2	0C44	_		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC2	0C46								PDC2<15:0>									0000
PHASE2	0C48							Р	HASE2<15:0)>								0000
DTR2	0C4A	_	_						[DTR2<13:0	>							0000
ALTDTR2	0C4C	_	_						AL	TDTR2<13	:0>							0000
TRIG2	0C52							TI	RGCMP<15:0)>								0000
TRGCON2	0C54		TRGDI	V<3:0>		_	—	_	_	_	-			TRO	GSTRT<5:	0>		0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	-	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	_						LEB<11:0)>						0000
AUXCON2	0C5E	_	_	—	—		BLANK	SEL<3:0>		_	—		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

I- DIGGOEDV/VMOGOV/EGV AND DIGGAEDV/VMOGOV DEVICED ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTD	AT<1:0>	CLD	AT<1:0>	SWAP	OSYNC	C000
FCLCON3	0C64			(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC3	0C66								PDC3<15:0>	•								0000
PHASE3	0C68							F	PHASE3<15:0)>								0000
DTR3	0C6A		—						[DTR3<13:0	>							0000
ALTDTR3	0C6C		—						AL	TDTR3<13	:0>							0000
TRIG3	0C72							Т	RGCMP<15:	0>								0000
TRGCON3	0C74		TRGDI	V<3:0>		_	_	_	_	_	_			TR	GSTRT<5:	0>		0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C		—	_	_						LEB<11:0)>						0000
AUXCON3	0C7E		—	—	—		BLANK	SEL<3:0>			—		CHOPS	SEL<3:0>	•	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

.

.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 =	= 50 (default)					
	•						
	000000010 = 000000001 = 000000000 =	= 3					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

REGISTER	<u>R 10-2: PMD</u> 2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_		IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
				OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit
Legend:	1.1.1						
R = Readab		W = Writable b	Dit	•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '0	,				
bit 11	-	t Capture 4 Mod					
		oture 4 module is					
	0 = Input Cap	oture 4 module is	s enabled				
bit 10	IC3MD: Input	t Capture 3 Mod	ule Disable bit				
		oture 3 module is					
		oture 3 module is					
bit 9		t Capture 2 Mod					
		oture 2 module is oture 2 module is					
bit 8	IC1MD: Input	t Capture 1 Mod	ule Disable bit				
	1 = Input Cap	oture 1 module is oture 1 module is	s disabled				
bit 7-4		ted: Read as '0					
bit 3	OC4MD: Out	put Compare 4	Module Disable	e bit			
		ompare 4 modul					
	-	ompare 4 modu					
bit 2		put Compare 3		e bit			
	•	ompare 3 modul					
L:1 4	-	ompare 3 modul		. h.:4			
bit 1		put Compare 2					
	\perp – Output Co	ompare 2 modu					
	0 = Output Co	ompare 2 modul	le is enabled				
bit 0		ompare 2 modul put Compare 1		e bit			
bit 0	OC1MD: Out	ompare 2 modul put Compare 1 l ompare 1 modul	Module Disable	e bit			

~

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
	D 444 A	D 444 0	D 444 A	Date	D 444 0	DAVA	D # 44 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	FLT2R<6:0> (see Table 11	-2 for input pin	Fault 2 (FLT2)) to the Corresp nbers)	onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I	Fault 2 (FLT2) selection nur 121		onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI	Fault 2 (FLT2) selection nur 121 P1		onding RPn F	Pin bits	
bit 14-8 bit 7	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI nput tied to CM	Fault 2 (FLT2 selection nur 121 P1		onding RPn F	Pin bits	

NOTES:

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	_			_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_
bit 7							bit (
<u> </u>							
Legend:	- 1-:4			II II.			
R = Readable		W = Writable		-	nented bit, rea		
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own
bit 15	TON: Timerx	On hit					
	When T32 = 2						
	1 = Starts 32-	bit Timerx/y					
	0 = Stops 32-						
	<u>When T32 = 0</u> 1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit				
		ues module op			dle mode		
		s module opera		ode			
bit 12-7	-	ted: Read as '					
bit 6		erx Gated Time	Accumulation	Enable bit			
	When TCS = This bit is igno						
	When TCS =						
	1 = Gated tim	e accumulatior					
		e accumulation					
bit 5-4		: Timerx Input	Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit				
		nd Timery form nd Timery act as					
bit 2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timerx Clock Source Select bit						
	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	ne rising edge)			
bit 0	Unimplomon	ted: Read as '	ı'				

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32
bit 15	·				·		bit
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Fault mo cleared i	t Mode Select b ode is maintain n software and	ed until the Fa a new PWM pe	eriod starts			
		de is maintaine	d until the Faul	t source is rem	loved and a ne	w PWM period	starts
bit 14	FLTOUT: Fau		. –				
		tput is driven hi tput is driven lo					
bit 13		ault Output Sta					
		is tri-stated on		'n			
	•	I/O state is defi			ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
		out is inverted out is not invert	ed				
bit 11-9	Unimplemen	ted: Read as '	כי				
bit 8	OC32: Casca	ide Two OCx M	odules Enable	bit (32-bit oper	ration)		
		module operate module operate					
bit 7		tput Compare x		Select bit			
		OCx from the s			CSELx bits		
		nizes OCx with				S	
bit 6	TRIGSTAT: T	imer Trigger St	atus bit				
		urce has been [.] urce has not be			d clear		
bit 5		put Compare x		•			
	1 = OCx is tr	• •	·				
	0 = Output C	ompare x mod	ule drives the C	OCx pin			
Note 1:	Do not use the O	Cx module as i	ts own Svnchro	nization or Tric	aaer source.		
	When the OCy m		-			module uses t	he OCv
	module as a Trigg						
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2					n source. See S	Section 24.0
	PTGO2 = OC3 $PTGO3 = OC4$						

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
511 2	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence.
h :+ 4	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "**UART**" (DS70582) section in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UARTx module for transmit operation.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	0'						
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits					
	10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID<17>								
	•								
	•								
	•								
		npares up to Da s not compare	•	7 with EID<0>					

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0		
bit 15	I						bit 8		
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0		
bit 7							bit		
Logondi									
Legend: R = Readable	- hit	W = Writable	hit	LI – Unimplor	mented bit, rea	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr			
	FUR					x – Dit is uliki			
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	=	Filter Hit Num							
		1 = Reserved							
	01111 = Filte	er 15							
	•								
	•								
	•								
	00001 = Filter 1 00000 = Filter 0								
bit 7		ted: Read as '	0'						
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits								
	1000101-1111111 = Reserved								
		IFO almost full							
		leceiver overflo							
	1000010 = K 1000001 = E	Vake-up interru rror interrupt	μ						
	1000000 = N								
	•								
	•								
	•								
		11111 = Rese							
	•	B15 buffer inte	inupt						
	•								
	•								
	0001001 = R	B9 buffer inter	rupt						
		B8 buffer inter							
		RB7 buffer inte RB6 buffer inte							
		RB5 buffer inte							
		RB4 buffer inte							
	0000011 = T	RB3 buffer inte	errupt						
		RB2 buffer inte RB1 buffer inte							

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BP<3:0>				F2BP<3:0>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BI	P<3:0>			F0BI	P<3:0>			
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-12 F3BP<3:0>: RX Buffer Mask for Filter 3 to 1111 = Filter hits received in RX FIFO bu 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0				iffer					
bit 11-8	F2BP<3:0>	: RX Buffer Mas	k for Filter 2 b	oits (same value	s as bits<15:1	2>)			
bit 7-4	F1BP<3:0>	: RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)			
	3-0 F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits<15:12>)								

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet. refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows the ADC module to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode
- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable conversion Trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

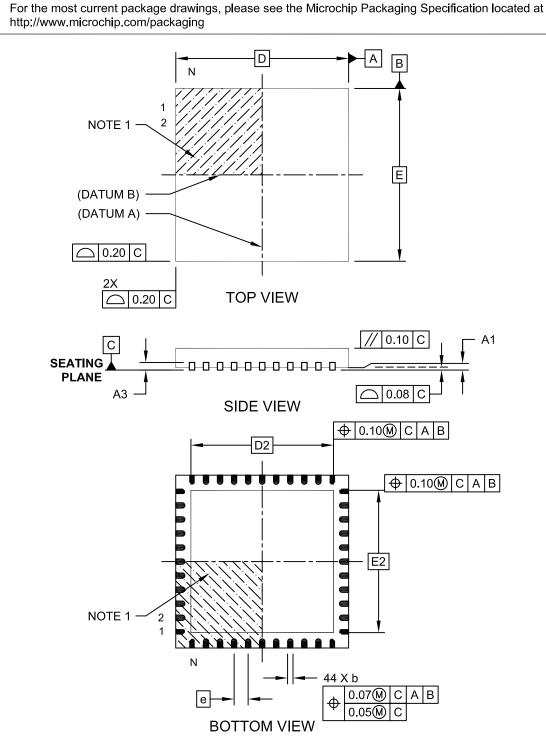
REGISTER 24-6:	PTGSDLIM: PTG STEP DELAY LIMIT REGISTER ^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGSD	LIM<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGSE)LIM<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).


REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC)LIM<7:0>			
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			ad as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unki	nown		

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

NOTES:

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2