

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE 4	-14:	PVVIVI G	ENERA	ATOR 2 REGISTER MAP FOR dSPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY														
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	\T<1:0>	FLTD	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON2	0C44	_		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC2	0C46				PDC2<15:0>								0000					
PHASE2	0C48				PHASE2<15:0>								0000					
DTR2	0C4A	_	_						[DTR2<13:0	>							0000
ALTDTR2	0C4C	_	_						AL	TDTR2<13	:0>							0000
TRIG2	0C52							TI	RGCMP<15:0)>								0000
TRGCON2	0C54		TRGDI	V<3:0>		_	—	_	_	_	-			TRO	GSTRT<5:	0>		0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	-	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	LEB<11:0>							0000							
AUXCON2	0C5E	_	_	—	—		BLANK	SEL<3:0>		_	—		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

I- DIGGOEDV/VMOGOV/EGV AND DIGGAEDV/VMOGOV DEVICED ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTD	AT<1:0>	CLD	AT<1:0>	SWAP	OSYNC	C000
FCLCON3	0C64			(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC3	0C66				PDC3<15:0>								0000					
PHASE3	0C68				PHASE3<15:0> 0000								0000					
DTR3	0C6A		—						[DTR3<13:0	>							0000
ALTDTR3	0C6C		—						AL	TDTR3<13	:0>							0000
TRIG3	0C72							Т	RGCMP<15:	0>								0000
TRGCON3	0C74		TRGDI	V<3:0>		_	_	_	_	_	_			TR	GSTRT<5:	0>		0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C		—	_	_						LEB<11:0)>						0000
AUXCON3	0C7E		—	—	— BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN						0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

.

.

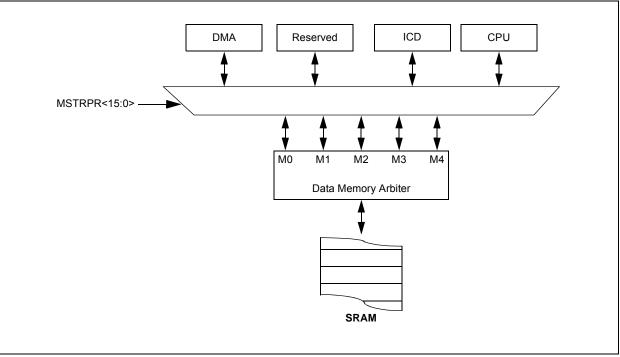
4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE


that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Drierity	MSTRPR<15:0> Bit Setting ⁽¹⁾					
Priority	0x0000	0x0020				
M0 (highest)	CPU	DMA				
M1	Reserved	CPU				
M2	Reserved	Reserved				
M3	DMA	Reserved				
M4 (lowest)	ICD	ICD				

Note 1: All other values of MSTRPR<15:0> are reserved.

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—				
bit 15	I	1	1				bit 8			
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}			
bit 7							bit (
lagandi		SO - Sottab	la Only hit							
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'				
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr				
		1 - Dit 13 30					lowin			
bit 15	WR: Write Co	ontrol bit(1)								
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is			
	cleared b	y hardware o	nce the operati	on is complete						
	 0 = Program or erase operation is complete and inactive WREN: Write Enable bit⁽¹⁾ 									
bit 14		1 = Enables Flash program/erase operations								
		 0 = Inhibits Flash program/erase operations 								
oit 13		WRERR: Write Sequence Error Flag bit ⁽¹⁾								
	1 = An impro	1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically								
		et attempt of th	e WR bit) operation com	olotod pormally						
bit 12			le Control bit ⁽²⁾	Sieteu normaliy						
			r goes into Star	ndbv mode duri	ina Idle mode					
			r is active durin							
bit 11-4	Unimplemen	ted: Read as	'0'							
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)						
	1111 = Rese									
	1110 = Rese 1101 = Rese									
	1100 = Rese									
	1011 = Rese									
	1010 = Rese 0011 = Memo		e operation							
	0010 = Rese	rved	-							
			ord program ope	eration ⁽⁵⁾						
	0000 = Rese	rvea								
	These bits can onl	-								
	If this bit is set, the				d upon exiting lo	dle mode, there	is a delay			
	(TVREG) before Flash memory becomes operational. All other combinations of NVMOP<3:0> are unimplemented.									
. .										
4:	Execution of the P	cution of the PWRSAV instruction is ignored while any of the NVM operations are in progress. adjacent words on a 4-word boundary are programmed during execution of this operation.								

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpler	mented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					ad as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾		
bit 15							bit 8		
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
CLKLOC	CK IOLOCK	IOLOCK LOCK - CF ⁽³⁾							
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR				
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'			
-n = Value	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'						
bit 15	-	ted: Read as							
bit 14-12		Current Oscill			/)				
		C Oscillator (F C Oscillator (F							
		ower RC Oscil							
	100 = Reserv		()						
		y Oscillator (X		h PLL					
		y Oscillator (X							
	001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)								
bit 11		Unimplemented: Read as '0'							
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)					
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n					
		C Oscillator (F		le-by-16					
		ower RC Oscil	ator (LPRC)						
	100 = Reserv	/ed y Oscillator (X							
		y Oscillator (X		IFLL					
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)				
		C Oscillator (F		,	,				
bit 7		Clock Lock Ena							
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and		
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified			
bit 6		Lock Enable b		-	-				
	1 = I/O lock is	s active							
	0 = I/O lock is not active								
bit 5	LOCK: PLL L	ock Status bit	(read-only)						
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled			
Note 1:	Writes to this regis						ʻdsPIC33/		
2:	Direct clock switch This applies to cloo mode as a transitio	es between ar ck switches in	y primary osci either directior	llator mode wi n. In these inst	th PLL and FRC ances, the appli	PLL mode are			
0	This bit should only								

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER	TU-5: PIVID6	. PERIPHER		DISABLE C	UNIROL RE	GISIER 6	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplement	ted: Read as '	כ'				
bit 10	PWM3MD: P\	NM3 Module D	isable bit ⁽¹⁾				
	1 = PWM3 mo	odule is disable	ed				
	0 = PWM3 mo	odule is enable	d				
bit 9	PWM2MD: P\	NM2 Module D	isable bit ⁽¹⁾				
	1 = PWM2 module is disabled						
	0 = PWM2 mo	odule is enable	d				
bit 8	PWM1MD: P\	NM1 Module D	isable bit ⁽¹⁾				
		odule is disable					
	0 = PWM1 mo	odule is enable	d				
bit 7-0	Unimplement	ted: Read as '	כ'				

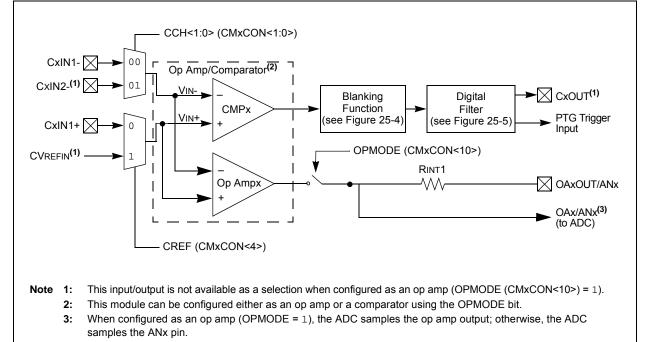
REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.


Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information
	on usage, configuration and operation of the
	JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502 and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA.

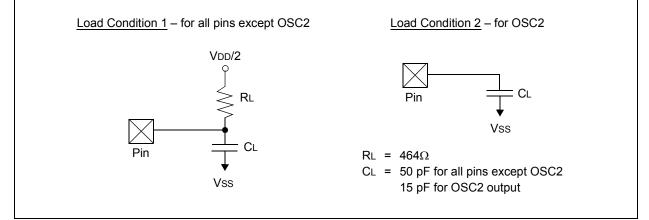
DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	9	15	mA	-40°C				
DC20a	9	15	mA	+25°C	3 3\/	10 MIPS		
DC20b	9	15	mA	+85°C	3.3V	10 1011-5		
DC20c	9	15	mA	+125°C				
DC22d	16	25	mA	-40°C				
DC22a	16	25	mA	+25°C	3.3∨	20 MIPS		
DC22b	16	25	mA	+85°C		20 1011-5		
DC22c	16	25	mA	+125°C				
DC24d	27	40	mA	-40°C				
DC24a	27	40	mA	+25°C	3.3V	40 MIPS		
DC24b	27	40	mA	+85°C	3.3V	40 1011-5		
DC24c	27	40	mA	+125°C				
DC25d	36	55	mA	-40°C				
DC25a	36	55	mA	+25°C	3.3V	60 MIPS		
DC25b	36	55	mA	+85°C	3.3V	OU IVIIPS		
DC25c	36	55	mA	+125°C	7			
DC26d	41	60	mA	-40°C				
DC26a	41	60	mA	+25°C	3.3V	70 MIPS		
DC26b	41	60	mA	+85°C				

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

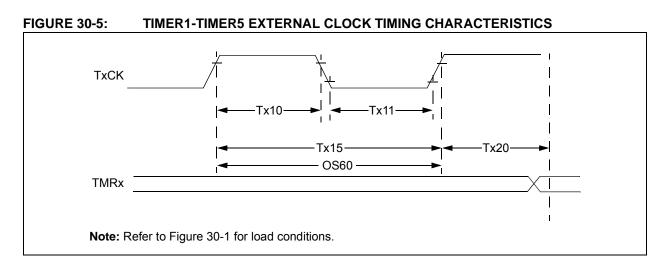

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 30.1 "DC
	Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

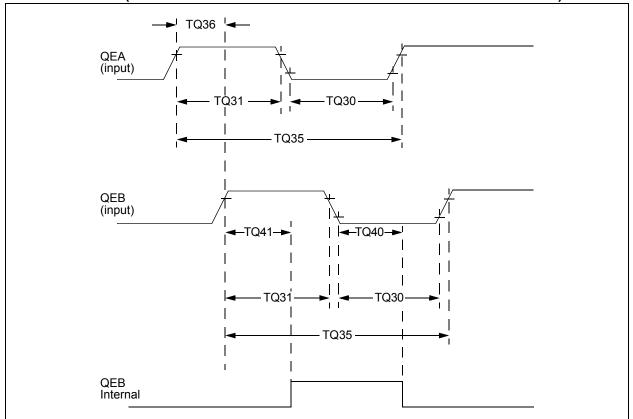


TABLE 30-23: TIME	1 EXTERNAL CLOCK TIMING REQUI	REMENTS ⁽¹⁾
-------------------	-------------------------------	------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	_	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1		ange (oscillator etting bit, TCS	DC		50	kHz	
TA20	TCKEXTMRL			0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

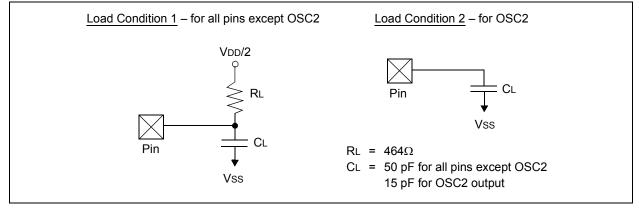
AC CHAR	ACTERIST	rics	Standard Ope (unless other Operating tem	wise state	ed) -40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections. NOTES:

31.2 **AC Characteristics and Timing Parameters**


The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

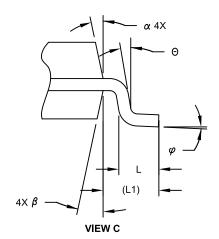
TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

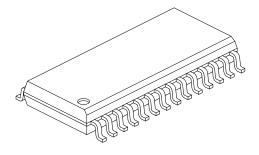
AC CHARACTERISTICSStandard Operating Conditions: 3.0V to (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +1$							
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions				Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г


$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

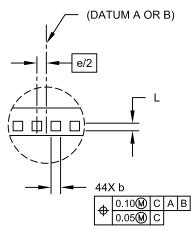

٦

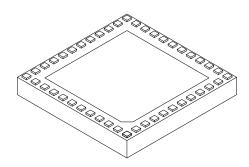
© 2011-2013 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		


Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

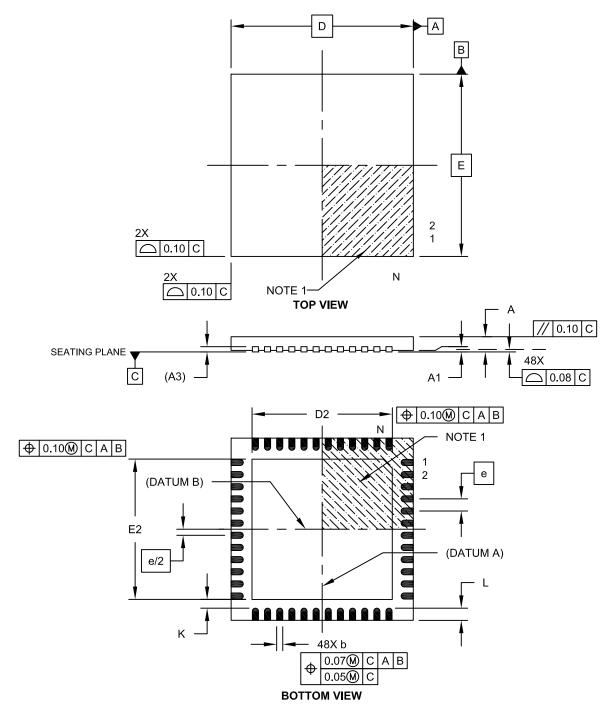
44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Number of Pins per Side	ND		12		
Number of Pins per Side	NE		10		
Pitch	е	0.50 BSC			
Overall Height	Α	0.80 0.90 1.0			
Standoff	A1	0.025	-	0.075	
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40 4.55 4.70			
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

NOTES: