

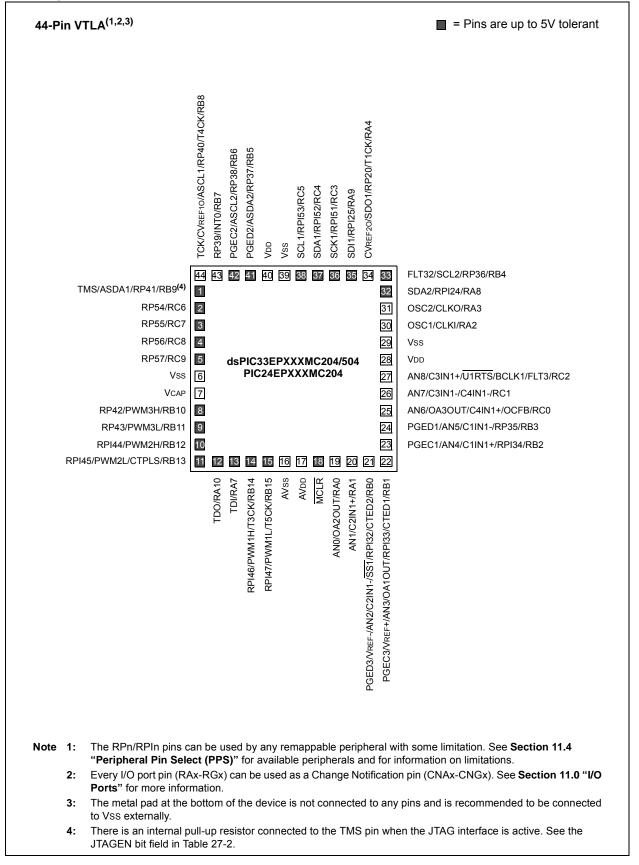
Welcome to E-XFL.COM

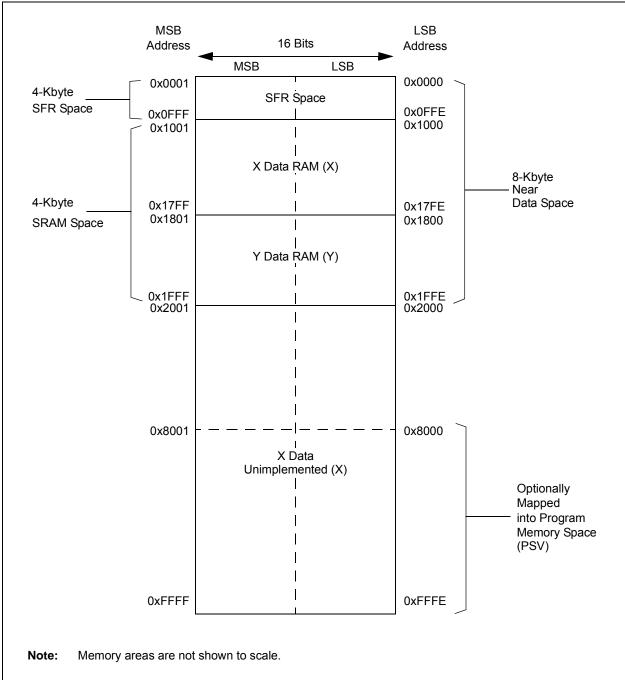
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	'IN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BI	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422	F7BP<3:0> F6BP<3:0> F5BP<3:0>								F4BP	<3:0>		0000					
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					MIDE	_	EID<	17:16>	xxxx			
C1RXM0EID	0432				EID<	:15:8>				EID<				7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>				SID<2:0> — MIDE — EID<17:16>					17:16>	xxxx		
C1RXM1EID	0436				EID<	:15:8>				EID<7:0>						xxxx		
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>		-		xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF1EID	0446		EID<15:8>									EID<	7:0>				xxxx	
C1RXF2SID	0448		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx	
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF5SID	0454				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF5EID	0456				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF6SID	0458				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462					:15:8>				EID<7:0>								xxxx
C1RXF9SID	0464					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466					:15:8>							EID<					xxxx
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680					RP35	R<5:0>			_	—			RP20F	₹<5:0>			0000
RPOR1	0682	_	_		RP37R<5:0>						—	RP36R<5:0>						0000
RPOR2	0684	_	_		RP39R<5:0>					—	RP38R<5:0>					0000		
RPOR3	0686	_	_		RP41R<5:0>					—	RP40R<5:0>					0000		
RPOR4	0688	_	_		RP43R<5:0>					—	RP42R<5:0>					0000		
RPOR5	068A	_	—		RP55R<5:0>					_	—	RP54R<5:0>				0000		
RPOR6	068C	_	—		RP57R<5:0>					_	—			RP56F	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_			RP35F	R<5:0>			_	_		•	RP20F	R<5:0>			0000
RPOR1	0682	_		RP37R<5:0>						_	_	RP36R<5:0>					0000	
RPOR2	0684	_	—			RP39F	२<5:0>			_	_			RP38	R<5:0>			0000
RPOR3	0686	_	—		RP41R<5:0>				_	_			RP40	R<5:0>			0000	
RPOR4	0688	_	_			RP43F	२<5:0>			—	_			RP42	R<5:0>			0000
RPOR5	068A	_	_			RP55F	२<5:0>			—	_			RP54	R<5:0>			0000
RPOR6	068C	_	_		RP57R<5:0>					—	_	RP56R<5:0>				0000		
RPOR7	068E	_	_			RP97F	२<5:0>			—	_	_	_	_	_	_	_	0000
RPOR8	0690		_			RP118	R<5:0>			_	_	—	_	—	_	—	_	0000
RPOR9	0692	—	_	_	_	_	_	_	_	_	_			RP120	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

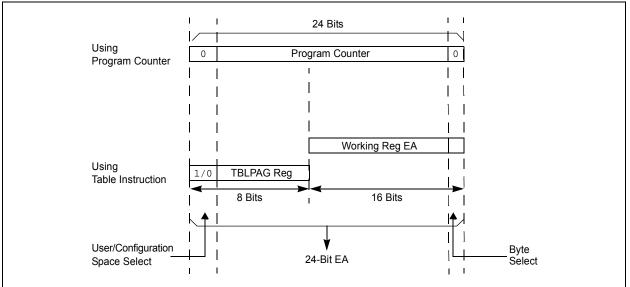
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

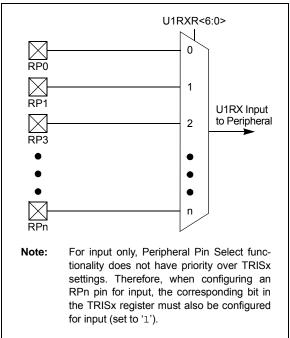
Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER	<u>R 10-2: PMD</u> 2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—		IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
				OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit
Legend:	1.1.1						
R = Readab		W = Writable b	Dit	•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '0	,				
bit 11	-	t Capture 4 Mod					
	•	ture 4 module is					
	0 = Input Cap	oture 4 module is	s enabled				
bit 10	IC3MD: Input	t Capture 3 Mod	ule Disable bit				
		oture 3 module is					
		oture 3 module is					
bit 9		t Capture 2 Mod					
		oture 2 module is oture 2 module is					
bit 8	IC1MD: Input	t Capture 1 Mod	ule Disable bit				
	1 = Input Cap	oture 1 module is oture 1 module is	s disabled				
bit 7-4		ted: Read as '0					
bit 3	OC4MD: Out	put Compare 4	Module Disable	e bit			
		ompare 4 modul					
	-	ompare 4 modu					
bit 2		put Compare 3		e bit			
	•	ompare 3 modul					
L:1 4	-	ompare 3 modul		. h.:4			
bit 1		put Compare 2					
	\perp – Output Co	ompare 2 modu					
	0 = Output Co	ompare 2 modul	le is enabled				
bit 0		ompare 2 modul put Compare 1		e bit			
bit 0	OC1MD: Out	ompare 2 modul put Compare 1 l ompare 1 modul	Module Disable	e bit			


~

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

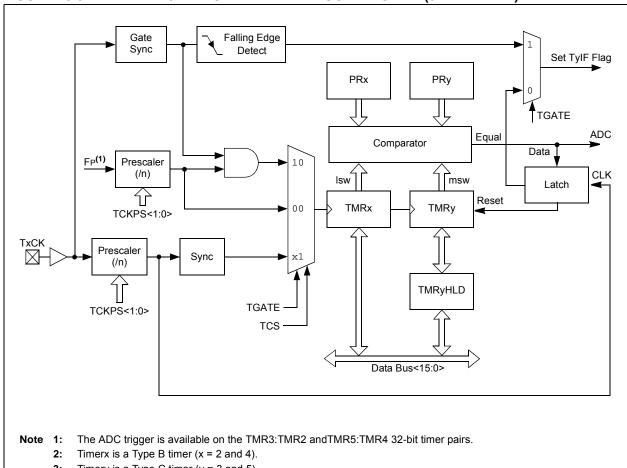
FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the op amp/ comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module"), and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.


Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009;	/* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0		5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

3: Timery is a Type C timer (y = 3 and 5).

Timerx/y Resources 13.1

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1					
bit 15							bit 8					
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
—	—	_	RB0	DLC3	DLC2	DLC1	DLC0					
bit 7							bit 0					
Lonondi												
Legend:	l. h.:.		L.11			-l (O)						
R = Readab		W = Writable		•	mented bit, read	ad as '0' x = Bit is unknown						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15-10	EID<5:0>: E	xtended Identifi	er bits									
bit 9	RTR: Remot	e Transmission	Request bit									
	When IDE =	1:										
	•	e will request re	mote transmis	ssion								
	0 = Normal n	0										
	When IDE = The RTR bit											
h :+ 0	RB1: Reserv											
bit 8			or CAN proto									
		et this bit to '0' p	-	0001.								
bit 7-5	•	nted: Read as '	0									
bit 4	RB0: Reserv											
	User must se	et this bit to '0' p	per CAN proto	ocol.								
hit 2 0		Jota Longth Co.	da hita									

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 1				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	rte 0				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown		

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

	23-2: Al		CONTROL REG						
R/W-0	R/W-	0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
VCFG2	VCFO	G1 VCFG0	—	_	CSCNA	CHPS1	CHPS0		
bit 15							bit		
R-0	R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUFS	SMPI		SMPI2	SMPI1	SMPI0	BUFM	ALTS		
bit 7	Sivil					BOTW	bit		
Logondi									
Legend:	hit	M/ - Mritabla	hit U	- Unimplo	monted hit read				
R = Readable		W = Writable		•	mented bit, read				
-n = Value at	POR	'1' = Bit is set	t 'U)' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-13	VCFG<2	2:0>: Converter Volt	age Reference Co	onfiguration	bits				
	Value	VREFH	VREFL						
	000	Avdd	Avss						
	001	External VREF+	Avss						
	010	Avdd	External VREF-						
	011	External VREF+	External VREF-						
	1xx	Avdd	Avss						
bit 12-11	Unimple	emented: Read as '	ʻ0'						
bit 10	CSCNA: Input Scan Select bit								
	1 = Scans inputs for CH0+ during Sample MUXA								
		s not scan inputs	gp						
bit 9-8	CHPS<1:0>: Channel Select bits								
	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':								
	1x = Converts CH0, CH1, CH2 and CH3								
		nverts CH0 and CH	1						
L:1 7		nverts CH0	(
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)								
	1 = ADC is currently filling the second half of the buffer; the user application should access data in the first half of the buffer								
	0 = ADC is currently filling the first half of the buffer; the user application should access data in th								
		ond half of the buffe		,					
bit 6-2	SMPI<4	:0>: Increment Rate	e bits						
	When ADDMAEN = 0:								
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation								
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation								
	•								
	•								
	x0001 =	 Generates interrup 					n		
			ot after completion	of every sa	ample/conversio	n operation			
	x0000 =	-	•			-			
	x0000 = <u>When Al</u>	DDMAEN = 1:		a manda eta a	f				
	x0000 = <u>When Al</u> 11111 =	DDMAEN = 1: Increments the DM	IA address after c						
	x0000 = <u>When Al</u> 11111 =	DDMAEN = 1:	IA address after c						
	x0000 = <u>When Al</u> 11111 =	DDMAEN = 1: Increments the DM	IA address after c						
	x0000 = <u>When Al</u> 11111 = 11110 = • •	DDMAEN = 1: Increments the DM	/A address after c /A address after c	ompletion c	of every 31st sa	mple/conversic	on operation		

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

11.0	11.0	11.0	11.0	11.0			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_			—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	U-0	0-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—		CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	Vrefl	Vrefl	VREFL

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel				
value	CH1	CH2	CH3		
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6		
0 (1,2)	OA2/AN0	AN1	AN2		

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value		ADC Channel	
Value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	Vrefl

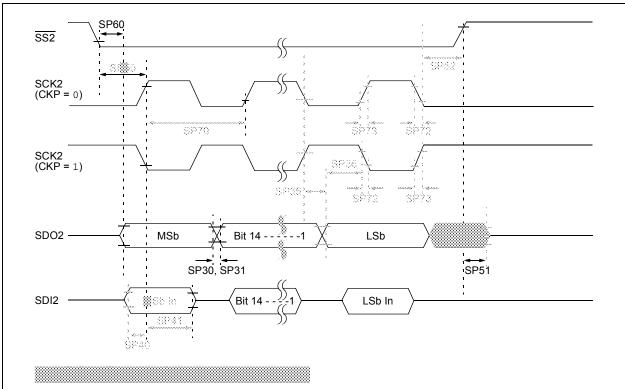
- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

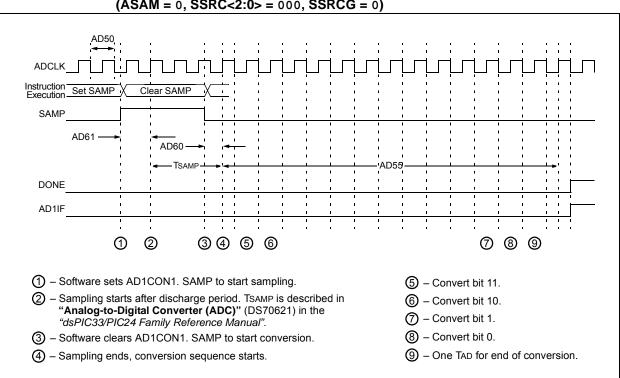
- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
CON	COE ⁽²⁾	CPOL	_	—	OPMODE	CEVT	COUT		
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
EVPOL1	EVPOL0	—	CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾		
bit 7							bit (
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15		p/Comparator							
		comparator is e							
		comparator is d							
bit 14		COE: Comparator Output Enable bit ⁽²⁾ 1 = Comparator output is present on the CxOUT pin							
		tor output is pro		xout pin					
bit 13		parator Output I	-	t bit					
	•	= Comparator output is inverted							
	0 = Compara	tor output is no	t inverted						
bit 12-11	Unimplemen	ted: Read as '	0'						
bit 10	OPMODE: O	p Amp/Compai	ator Operatio	n Mode Select	t bit				
		erates as an o erates as a co							
bit 9	CEVT: Comp	arator Event bi	t						
	interrupts	s until the bit is	cleared	VPOL<1:0> s	ettings occurred	; disables futur	e triggers an		
	•	ator event did n							
bit 8		arator Output b							
	When CPOL = 0 (non-inverted polarity): 1 = VIN+ > VIN-								
	1 = VIN + > VI $0 = VIN + < VI$								
		= 1 (inverted p	olarity):						
	1 = VIN+ < VI	N-	<u> </u>						
	0 = VIN + > VI								

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)


- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB


TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

Revision C (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 20.1 "UART Helpful Tips" and Section 3.6 "CPU Resources". All occurrences of TLA were updated to VTLA throughout the document, with the exception of the pin diagrams (updated diagrams were not available at time of publication).

A new chapter, Section 31.0 "DC and AC Device Characteristics Graphs", was added.

All other major changes are referenced by their respective section in Table A-2.

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 256-Kbyte Flash and 32-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
Section 1.0 "Device Overview"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Block Diagram (see Figure 1-1), which now contains a CPU block and a reference to the CPU diagram. Updated the description and Note references in the Pinout I/O Descriptions for these
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers"	pins: C1IN2-, C2IN2-, C3IN2-, OA1OUT, OA2OUT, and OA3OUT (see Table 1-1). Updated the Recommended Minimum Connection diagram (see Figure 2-1).
Section 3.0 "CPU"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU Block Diagram (see Figure 3-1). Updated the Status register definition in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory Organization"	Updated the Data Memory Maps (see Figure 4-6 and Figure 4-11). Removed the DCB<1:0> bits from the OC1CON2, OC2CON2, OC3CON2, and OC4CON2 registers in the Output Compare 1 Through Output Compare 4 Register Map (see Table 4-10). Added the TRIG1 and TRGCON1 registers to the PWM Generator 1 Register Map (see Table 4-13). Added the TRIG2 and TRGCON2 registers to the PWM Generator 2 Register Map (see Table 4-14). Added the TRIG3 and TRGCON3 registers to the PWM Generator 3 Register Map (see Table 4-15). Updated the second note in Section 4.7.1 "Bit-Reversed Addressing Implementation".
Section 8.0 "Direct Memory Access (DMA)"	Updated the DMA Controller diagram (see Figure 8-1).
Section 14.0 "Input Capture"	Updated the bit values for the ICx clock source of the ICTSEL<12:10> bits in the ICxCON1 register (see Register 14-1).
Section 15.0 "Output Compare"	Updated the bit values for the OCx clock source of the OCTSEL<2:0> bits in the OCxCON1 register (see Register 15-1). Removed the DCB<1:0> bits from the Output Compare x Control Register 2 (see Register 15-2).

TABLE A-2: MAJOR SECTION UPDATES

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.