

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
C1IN1-	I	Analog	No	Op Amp/Comparator 1 Negative Input 1.
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.
OA1OUT	0	Analog	No	Op Amp 1 output.
C1OUT	0	—	Yes	Comparator 1 output.
C2IN1-	I	Analog	No	Op Amp/Comparator 2 Negative Input 1.
C2IN2-	I	Analog	No	Comparator 2 Negative Input 2.
C2IN1+	I	Analog	No	Op Amp/Comparator 2 Positive Input 1.
OA2OUT	0	Analog	No	Op Amp 2 output.
C2OUT	0		Yes	Comparator 2 output.
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.
OA3OUT	0	Analog	No	Op Amp 3 output.
C3OUT	0		Yes	Comparator 3 output.
C4IN1-	I.	Analog	No	Comparator 4 Negative Input 1.
C4IN1+	I.	Analog	No	Comparator 4 Positive Input 1.
C4OUT	0		Yes	Comparator 4 output.
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.
VCAP	Р		No	CPU logic filter capacitor connection.
Vss	Р		No	Ground reference for logic and I/O pins.
VREF+	1	Analog	No	Analog voltage reference (high) input.
VREF-	Ι	Analog	No	Analog voltage reference (low) input.
Legend: CMOS = C ST = Schn	nitt Trigg	jer input v	with CI	or output Analog = Analog input P = Power MOS levels O = Output I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	-	_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	insmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	ŝ	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268		SPI2 Transmit and Receive Buffer Register 000							0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-2	1: t	ECANTI	REGIST		WHEN		TOTRE	1<0>) =	0 OR .	L FOR asi	PIC33E	PXXXIV	IC/GP5		ICES O	NLY		
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPM	/IODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	—	_	_	_	—	_	—	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	—	—		F	ILHIT<4:0>			—			•	ICODE<6:0	>			0040
C1FCTRL	0406	C	DMABS<2:0	>		_	—	—	_	_	_	_			FSA<4:0>			0000
C1FIFO	0408		—			FBP<	5:0>			_	_			FNRB	<5:0>			0000
C1INTF	040A		—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—		_	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>							RERRCN	NT<7:0>				0000
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SI	=G2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	Р	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSł	<<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MS	K<1:0>	F1MSH	<<1:0>	F0MS	<<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<<1:0>	F8MSI	<<1:0>	0000

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	OVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF					RXOVF17	RXOVF16	0000			
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	RTREN5 TX5PRI<1:0> TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI<1:0>							RI<1:0>	0000		
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0>							xxxx				
C1RXD	0440							E	CAN1 Rece	eive Data Wo	ord							xxxx
C1TXD	0442		ECAN1 Transmit Data Word 2									xxxx						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	Sleep mode	
PWRSAV	#IDLE_MODE	;	Put	the	device	into	Idle mode	

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15		•		•	•	•	bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7	CKF	WIGTEN	SFREZ 7	SFREI?	SFREU 7	FFREN	bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	0'				
bit 12			bit (SPIx Mas	-	()		
		PIx clock is di	sabled, pin fun	ctions as I/O			
oit 11		able SDOx Pir					
			/ the module; p	oin functions as	s I/O		
		is controlled b					
bit 10	MODE16: Wo	ord/Byte Comn	nunication Sele	ect bit			
		ication is word	· · /				
		ication is byte-	. ,				
bit 9		ata Input Sam	ole Phase bit				
	Master mode	-	end of data o	utout time			
			middle of data				
	Slave mode:						
			SPIx is used i	n Slave mode.			
bit 8		lock Edge Sele					
						lle clock state (r	
bit 7			bit (Slave mo			ve clock state (i	
		sused for Slav					
				is controlled b	by port function		
bit 6	CKP: Clock F	Polarity Select	bit				
			nigh level; activ ow level; active				
bit 5	MSTEN: Mas	ter Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
Note 1: T	he CKE bit is not	used in Frame	d SPI modes. I	Program this bi	it to '0' for Fram	ed SPI modes (FRMEN = 1
	his bit must be cl						
0							

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽	¹⁾	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0				
bit 15				•			bit 8				
			D AMA	D 444 0	D 444 0	D 444.0	D 444 0				
R/W-0, H0		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL				
bit 7							bit				
Legend:		HC = Hardwar	e Clearable b	it							
R = Reada	ble bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	1 = UARTx is										
bit 14	Unimplemen	Unimplemented: Read as '0'									
bit 13	USIDL: UAR	USIDL: UARTx Stop in Idle Mode bit									
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
bit 12	1 = IrDA enc	 IREN: IrDA[®] Encoder and Decoder Enable bit⁽²⁾ 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled 									
bit 11	$1 = \overline{\text{UxRTS}} p$	le Selection for bin is in Simplex bin is in Flow Co	mode	t							
bit 10	Unimplemen	ted: Read as '0	,								
bit 9-8	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U 00 = UxTX a	 UEN<1:0>: UARTx Pin Enable bits 11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by PORT latches⁽³⁾ 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used⁽⁴⁾ 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches⁽⁴⁾ 00 = UxTX and UxRTS pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by PORT latches 									
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode Ei	nable bit						
	 1 = UARTx continues to sample the UxRX pin; interrupt is generated on the falling edge; bit is cleared in hardware on the following rising edge 0 = No wake-up is enabled 										
bit 6	1 = Enables	ARTx Loopback Loopback mode k mode is disab	:	bit							
2:	Refer to the " UAI enabling the UAR This feature is or	Tx module for realized for realized available for the second second second second second second second second s	eceive or trans the 16x BRG	mit operation. mode (BRGH =	-	ce Manual" for i	nformation or				
	This feature is or	-	-	-							
A-	This fastura is ar	ny available on l	al nin dovicos								

4: This feature is only available on 64-pin devices.

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	°<3:0>			F6BF	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BF	°<3:0>			F4BF	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable	bit	U = Unimplemer	nted bit, read	d as '0'	
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkr	nown

	1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BF	P<3:0>			F10B	SP<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-12	<pre>bit 15-12 F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14</pre>						
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 1	0 bits (same val	ues as bits<1	5:12>)	
bit 7-4	-4 F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits<15:12>)						
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)	

© 2011-2013 Microchip Technology Inc.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

RW-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 15 bit 8 bit 8 bit 8 bit 8 bit 8 R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 - EXIDE - EID17 EID16 bit 7 bit 0 - - EXIDE - bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -									
bit 15 bit 2 bit 3 bit 8 bit 8 bit 8 bit 7 bit 7 bit 9 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 7 bit 0 bit 0 bit 0 bit 1 bit 9 bit 1 bit 9 bit 1 bit 1 bit 9 bit 1	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 - EXIDE - EID17 EID16 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses Ignores EXIDE bit. Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID EID bit 1-0 EID Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0	bit 15							bit 8	
SID2 SID1 SID0 — EXIDE — EID17 EID16 bit 7 bit 0									
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter x = Bit is unknown bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter 1 = Message address bit, EIDx, must be '1' to match filter	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	SID2	SID1	SID0	_	EXIDE		EID17	EID16	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID 1 = Message address bit, EIDx, must be '1' to match filter	bit 7							bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID 1 = Message address bit, EIDx, must be '1' to match filter									
-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownbit 15-5SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filterbit 4Unimplemented: Read as '0'bit 3EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit.bit 2Unimplemented: Read as '0'bit 4Unimplemented: Read as '0'bit 5I = Matches only messages with Standard Identifier addresses 1 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit.bit 2Unimplemented: Read as '0'bit 3EIDbit 4Unimplemented: Read as '0'bit 5Unimplemented: Read as '0'bit 6II = Matches only messages with Standard Identifier addresses I = Message address bit, EIDx, must be '1' to match filter	Legend:								
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses 1 f MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter bit 4 Unimplemented: Read as '0' bit 3 EXIDE: Extended Identifier Enable bit If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID I= Message address bit, EIDx, must be '1' to match filter	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0: Ignores EXIDE bit. bit 2 Unimplemented: Read as '0' bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter		0 = Message Unimplemen	address bit, SI Ited: Read as '	Dx, must be ' o'					
bit 1-0 EID<17:16>: Extended Identifier bits 1 = Message address bit, EIDx, must be '1' to match filter	If MIDE = 1: 1 = Matches only messages with Extended Identifier addresses 0 = Matches only messages with Standard Identifier addresses If MIDE = 0:								
1 = Message address bit, EIDx, must be '1' to match filter	bit 2	Unimplemented: Read as '0'							
	bit 1-0	EID<17:16>:	EID<17:16>: Extended Identifier bits						

NOTES:

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0			
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15		•	·				bit 8			
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—			
bit 7			•				bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit		CSIDL: CRC Stop in Idle Mode bit					
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
		•			ldle mode					
bit 12-8	0 = Continue VWORD<4:0:	s module opera	ation in Idle m e bits	ode						
bit 12-8	0 = Continue VWORD<4:0: Indicates the	s module opera	ation in Idle m e bits	ode		of 8 when PLE	N<4:0> > 7			
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module oper >: Pointer Valu number of valio	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7			
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7			
bit 12-8 bit 7 bit 6	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7			
bit 7	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is e	s module operatives >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7			
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull not full RC FIFO Empty empty not empty	ation in Idle m e bits d words in the t v Bit	ode		of 8 when PLE	N<4:0> > 7			
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull NC FIFO Empty empty not empty RC Interrupt Se	ation in Idle m e bits d words in the t v Bit election bit	ode FIFO. Has a m	naximum value		N<4:0> > 7			
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull AC FIFO Empty empty not empty RC Interrupt Secon FIFO is emptore on FIFO is emptore	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is composition	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is ft 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is composition	ation in Idle m e bits d words in the t election bit pty; final word plete and CRO	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7			
bit 7	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is fit 0 = FIFO is fit 1 = FIFO is fit 0 = FIFO is fit 1 = Interrupt 0 = Interrupt 1 = Starts CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull Not full RC FIFO Empty mpty not empty RC Interrupt Secon FIFO is emponent on FIFO is emponent on shift is component t CRC bit	ation in Idle m e bits d words in the t / Bit election bit pty; final word plete and CRC	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC seri LENDIAN: Data 	s module operatives >: Pointer Value number of valide LEN<4:0> \leq 7. C FIFO Full bit ull and full C FIFO Empty empty and empty RC Interrupt Secon on FIFO is emplored on FIFO is emplored on Shift is com t CRC bit RC serial shifter ial shifter is turn ata Word Little-	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Config	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7			
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC seriit LENDIAN: Data 1 = Data wor 	s module operatives Pointer Value number of valid LEN<4: $0^{5} \leq 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is emplored on FIFO is emplored on Shift is com- t CRC bit RC serial shifter ial shifter is turnata Word Little- d is shifted into	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Configo the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready Sb (little endiar	CRC	N<4:0> > 7			
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wort 0 = Data wort 	s module operatives Pointer Value number of valid LEN<4: $0^{5} \leq 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is emplored on FIFO is emplored on Shift is com- t CRC bit RC serial shifter ial shifter is turnata Word Little- d is shifted into	ation in Idle m e bits d words in the t d Bit election bit pty; final word plete and CRC r med off Endian Config the CRC star o the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7			

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Conditions			
	VIL	Input Low Voltage					
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled
	VIH	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	—	Vdd	V	(Note 3)
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)
		I/O Pins with SDAx, SCLx	0.8 VDD	—	5.5	V	SMBus disabled
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled
	ICNPU	Change Notification Pull-up Current					
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾					
DI31			20	50	100	μA	Vdd = 3.3V, Vpin = Vdd

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (VSS 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Von1	Output High Voltage	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		4x Source Driver Pins ⁽²⁾	2.0 ⁽¹⁾	_	—		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0(1)		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5 ⁽¹⁾	—	—	V	$IOH \geq -22 mA, VDD = 3.3 V$
		8x Source Driver Pins ⁽³⁾		—	—		IOH \geq -18 mA, VDD = 3.3V
			3.0(1)	—	—	1	IOH \geq -10 mA, VDD = 3.3V

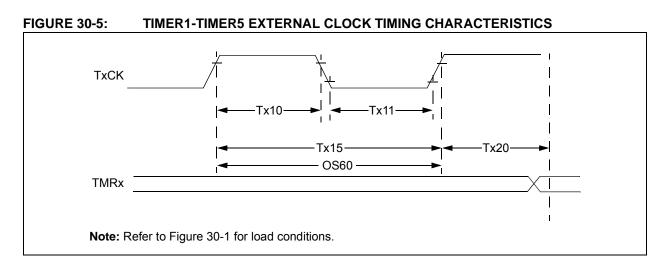
TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR


DC CHAR	ACTERIST	ICS	(unless		se stated)⁽¹⁾ -40°C ≤ T⁄	a.0V to 3.6V A \leq +85°C for Industrial A \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

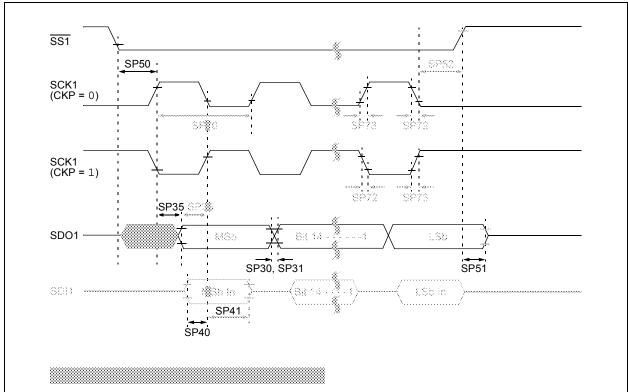


TABLE 30-23: TIME	1 EXTERNAL CLOCK TIMING REQUI	REMENTS ⁽¹⁾
-------------------	-------------------------------	------------------------

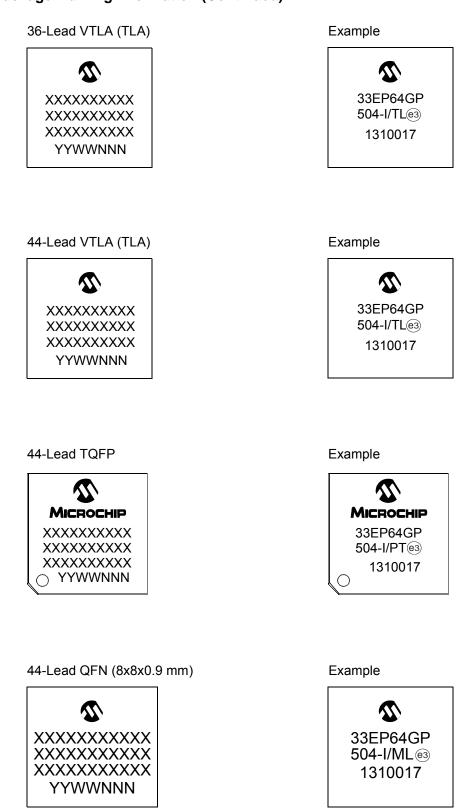
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	_	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

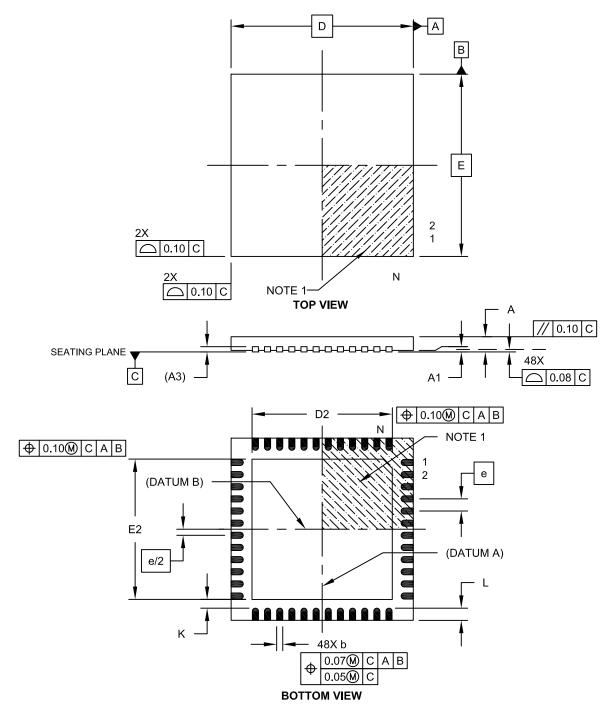
Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


TABLE 31-11: INTERNAL RC ACCURACY


AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unle Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					(unless otherwise stated)	
Param No.	Characteristic	Min	Min Typ Max Units Conditions					
	LPRC @ 32.768 kHz ^(1,2)							
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

33.1 Package Marking Information (Continued)

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).