

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4	TABLE 4-9: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	—	ICSIDL	10	CTSEL<2:0	>	—	-	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	_	_		_		—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC1BUF	0144		Input Capture 1 Buffer Register xx:												xxxx			
IC1TMR	0146		Input Capture 1 Timer 00									0000						
IC2CON1	0148		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2CON2	014A		IC32 ICTRIG TRIGSTAT - SYNCSEL<4:0>										000D					
IC2BUF	014C							Inp	ut Capture 2	2 Buffer Reg	gister							xxxx
IC2TMR	014E								Input Capt	ture 2 Time	r							0000
IC3CON1	0150		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152		_				—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC3BUF	0154							Inp	ut Capture 3	3 Buffer Reg	gister							xxxx
IC3TMR	0156								Input Capt	ture 3 Time	r							0000
IC4CON1	0158		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	_	_		-		-	_	IC32	ICTRIG	TRIGSTAT	-		S	YNCSEL<4	:0>		000D
IC4BUF	015C							Inp	ut Capture 4	4 Buffer Reg	gister							xxxx
IC4TMR	015E								Input Capt	ure 4 Time	r							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
FORCE ⁽¹⁾		_	_	—		_						
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0					
bit 7							bit					
Legend:		S = Settable b	oit									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	FORCE: Force	e DMA Transfe	er bit ⁽¹⁾									
	1 = Forces a	single DMA tra	insfer (Manua	l mode)								
	0 = Automati	c DMA transfer	initiation by D	DMA request								
bit 14-8	Unimplemen	ted: Read as 'd)'									
bit 7-0	IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits											
	01000110 = ECAN1 – TX Data Request ⁽²⁾											
	00100110 = IC4 – Input Capture 4											
	00100101 = IC3 - Input Capture 3											
	00100010 = ECAN1 – RX Data Ready ⁽²⁾ 00100001 = SPI2 Transfer Done											
		. = UART2TX – UART2 Transmitter										
		UART2RX – UART2 Receiver										
		TMR5 – Timer5										
	00011011 = TMR4 – Timer4											
	00011010 = OC4 – Output Compare 4											
	00011001 = OC3 – Output Compare 3											
	00001101 = ADC1 – ADC1 Convert done											
	00001100 = UART1TX – UART1 Transmitter											
	00001011 = UART1RX – UART1 Receiver 00001010 = SPI1 – Transfer Done											
		TMR3 – Timer3										
		TMR2 – Timer2										
		OC2 – Output (
		IC2 – Input Ca										
	0000010 =	OC1 – Output (Compare 1									
		IC1 – Input Ca										
	00000000 =	INT0 – Externa	I Interrupt 0									

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

REGISTER	<u>R 10-2: PMD</u> 2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2						
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
_		—		IC4MD	IC3MD	IC2MD	IC1MD					
bit 15							bit					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
				OC4MD	OC3MD	OC2MD	OC1MD					
bit 7							bit					
Legend:	1.1.1											
R = Readab		W = Writable b	Dit	•	nented bit, rea							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as '0	,									
bit 11	-	t Capture 4 Mod										
	•	oture 4 module is										
	0 = Input Cap	oture 4 module is	s enabled									
bit 10	IC3MD: Input Capture 3 Module Disable bit											
	1 = Input Capture 3 module is disabled											
		oture 3 module is										
bit 9		t Capture 2 Mod										
		oture 2 module is oture 2 module is										
bit 8	IC1MD: Input	IC1MD: Input Capture 1 Module Disable bit										
	1 = Input Cap	oture 1 module is oture 1 module is	s disabled									
bit 7-4		ted: Read as '0										
bit 3	OC4MD: Out	put Compare 4	Module Disable	e bit								
		ompare 4 modul										
	-	ompare 4 modu										
bit 2		OC3MD: Output Compare 3 Module Disable bit										
	•	ompare 3 modul										
L:1 4	-	ompare 3 modul		. h.:4								
bit 1		put Compare 2										
	\perp – Output Co	ompare 2 modu										
	0 = Output Co	ompare 2 modul	le is enabled									
bit 0		ompare 2 modul put Compare 1		e bit								
bit 0	OC1MD: Out	ompare 2 modul put Compare 1 l ompare 1 modul	Module Disable	e bit								

~

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

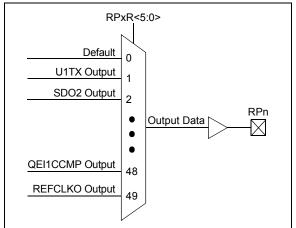
The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE


MOV	0xFF00, WO	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = No Sync or Trigger source for ICx
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = CTMU module synchronizes or triggers ICx
 - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$
 - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
 - $11001 = CMP2 \text{ module synchronizes or triggers ICx}^{(5)}$
 - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 module synchronizes or triggers ICx
 - 10010 = IC3 module synchronizes or triggers ICx
 - 10001 = IC2 module synchronizes or triggers ICx
 - 10000 = IC1 module synchronizes or triggers ICx
 - 01111 = Timer5 synchronizes or triggers ICx
 - 01110 = Timer4 synchronizes or triggers ICx
 - 01101 = Timer3 synchronizes or triggers ICx (default)
 - 01100 = Timer2 synchronizes or triggers ICx
 - 01011 = Timer1 synchronizes or triggers ICx
 - 01010 = PTGOx module synchronizes or triggers $ICx^{(6)}$
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = OC4 module synchronizes or triggers ICx
 - 00011 = OC3 module synchronizes or triggers ICx
 - 00010 = OC2 module synchronizes or triggers ICx
 - 00001 = OC1 module synchronizes or triggers ICx
 - 00000 = No Sync or Trigger source for ICx
- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1

PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	lled low externally in order to clear and disable the fault egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
-	d polarity using the IOCON1 register gister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0 OSYNC: Output Override Synchronization bit
 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 QEILEC<31:16>: High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R = Readable t		W = Writable '1' = Bit is set		U = Unimplen '0' = Bit is cle		ad as '0' x = Bit is unkr	
Legend:							
bit 7							bit
			QEIL	EC<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
			QEILE	EC<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

DC CHARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No. Typ. Max.			Units	Conditions				
DC61d	8		μΑ	-40°C				
DC61a	10	—	μA	+25°C	2.21/			
DC61b	12	—	μA	+85°C	- 3.3V			
DC61c	13	—	μA	+125°C				

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT $(\triangle Iwdt)^{(1)}$

Note 1: The \triangle IwDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Doze Ratio	Units	Conditions				
Doze Current (IDOZE) ⁽¹⁾							
DC73a ⁽²⁾	35		1:2	mA	-40°C	3.3V	Fosc = 140 MHz
DC73g	20	30	1:128	mA	-40 C		
DC70a ⁽²⁾	35	_	1:2	mA	+25°C	3.3V	Fosc = 140 MHz
DC70g	20	30	1:128	mA	+25 C		
DC71a ⁽²⁾	35	—	1:2	mA	195%	3.3V	
DC71g	20	30	1:128	mA	+85°C		Fosc = 140 MHz
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	3.3V	Ecco - 120 MH-
DC72g	15	30	1:128	mA	+125 C		Fosc = 120 MHz

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) statement
- · JTAG is disabled
- 2: Parameter is characterized but not tested in manufacturing.

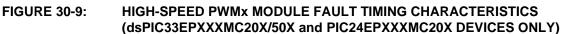
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Condition					
DI60a	licl	Input Low Injection Current	0		₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7	
DI60b	Іісн	Input High Injection Current	0		+5 ^(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾	_	+20 ⁽⁸⁾	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

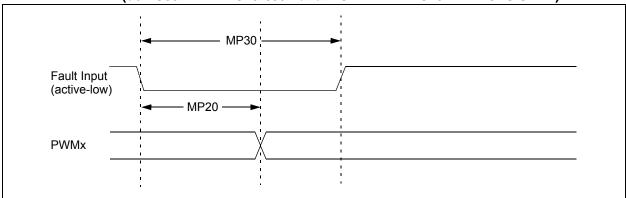
TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

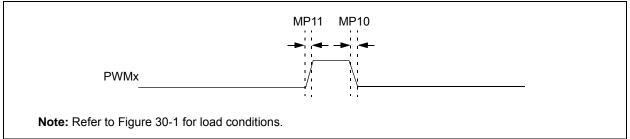
2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.


4: VIL source < (Vss – 0.3). Characterized but not tested.


5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.


7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

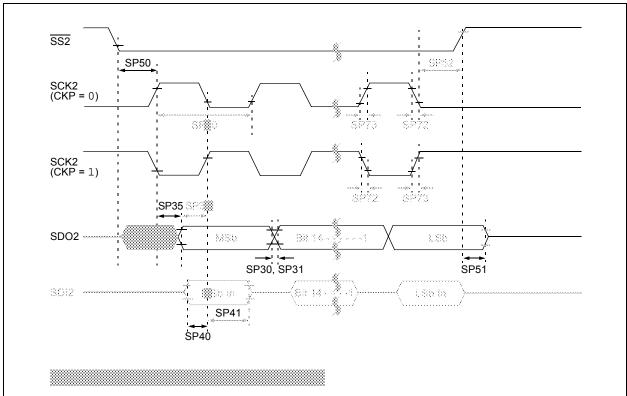

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
MP10	TFPWM	PWMx Output Fall Time		—	_	ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	_	—	_	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristic ⁽³⁾		Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS			
			400 kHz mode	1.3	—	μS			
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS11 Thi:so	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		300	ns			
IS25 TSU:DAT	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns			
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽¹⁾	100	_	ns			
IS26 TH	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated		
		Setup Time	400 kHz mode	0.6	—	μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25	—	μS			
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first		
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	—	μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS			
			Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	_	μS			
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4	—	μS			
			400 kHz mode	0.6	—	μS			
			1 MHz mode ⁽¹⁾	0.25		μS			
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns			
			400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5		μs	can start		
IS50	Св	Bus Capacitive Lo	ading	—	400	pF			
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)		

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

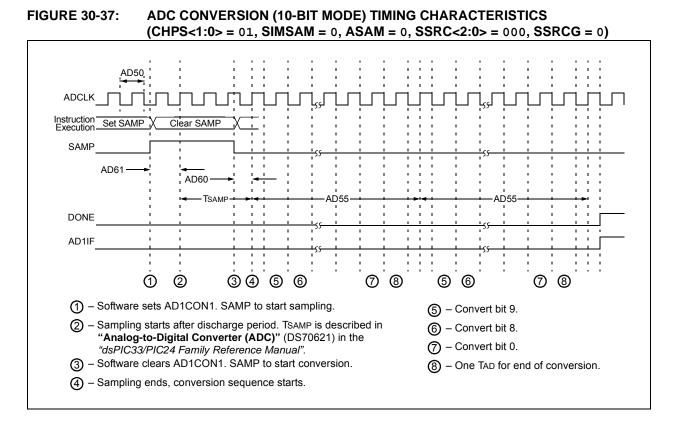
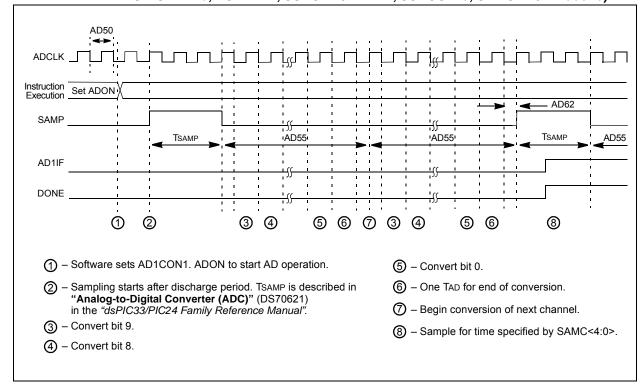

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Min.	Тур.	Max.	Units	Conditions		
		ADC A	Accuracy	(12-Bit	Mode)			
AD20a	Nr	Resolution	12	2 Data Bi	ts	bits		
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-5.5	_	5.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1	—	1	LSb	+85°C < TA \leq +125°C (Note 2)	
AD23a	Gerr	Gain Error ⁽³⁾	-10	—	10	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24a	EOFF	Offset Error	-5	_	5	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$	
			-5	_	5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25a	—	Monotonicity	—	—	—		Guaranteed	
		Dynamic	Performa	ance (12-	Bit Mod	e)		
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75	_	dB		
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68	_	dB		
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB		
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz		
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits		

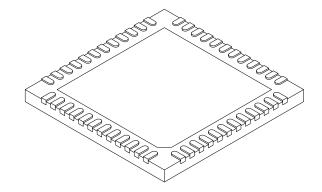
TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)


Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)



DS70000657H-page 464

NOTES:

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Dimension Limits			MAX			
Number of Pins	N	48					
Pitch	е		0.40 BSC				
Overall Height	Α	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.127 REF				
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2	4.45	4.60	4.75			
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	4.45	4.60	4.75			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

NOTES: