

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp204t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN15	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0		Yes	Reference clock output.
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK T3CK		ST ST	Yes	Timer2 external clock input.
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.
T5CK	i	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1	Ι	ST	No	CTMU External Edge Input 1.
CTED2	Ι	ST	No	CTMU External Edge Input 2.
U1CTS	Ι	ST	No	UART1 Clear-To-Send.
U1RTS	0		No	UART1 Ready-To-Send.
U1RX		ST	Yes	UART1 receive. UART1 transmit.
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

2.5 ICSP Pins

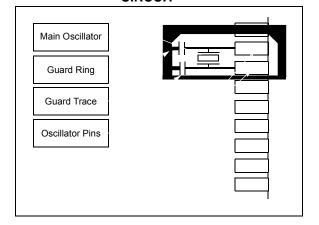
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	_	_	-	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	_	_	_	-	03C0
PORTG	0E62			-	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64			-	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			-	_	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	_	_	_	0000
CNENG	0E68			-	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A			-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	-	_	_			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	-	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_		_	_	TRISA8	_	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	011F
PORTA	0E02	_	_	_	_	_	_	_	RA8	_	_	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	_	_	LATA8	_	_	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	_	_	ODCA8	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	_	_	_	_	CNIEA8	_	_	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	_	_	CNPUA8	_	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	_	_	CNPDA8	_	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	_	—	_	—	_	—	_	—	—	ANSA4	—	—	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	-	_	-	—	-	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-58: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_	_	_	—	—	TRISC8	_	_		_		-	TRISC1	TRISC0	0103
PORTC	0E22			-	-	-	—	_	RC8	—	-		_			RC1	RC0	xxxx
LATC	0E24			_	_	_	_	_	LATC8	_	_	_	_	_	_	LATC1	LATC0	xxxx
ODCC	0E26			_	_	_	_	_	ODCC8	_	_	_	_	_	_	ODCC1	ODCC0	0000
CNENC	0E28	—	_	-	_		_	_	CNIEC8	—			_			CNIEC1	CNIEC0	0000
CNPUC	0E2A			_	_	_	_	_	CNPUC8	_	_	_	_	_	_	CNPUC1	CNPUC0	0000
CNPDC	0E2C			_	_	_	_	_	CNPDC8	_	_	_	_	_	_	CNPDC1	CNPDC0	0000
ANSELC	0E2E	-	_	_	_	_	—	—	—	—		_	_	_		ANSC1	ANSC0	0003

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

					UNIRUL RE		
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	_	—	—	—	CMPMD	—	—
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
CRCMD	—	—	_	—	—	I2C2MD	—
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9-8	Unimplemented: Read as '0'
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled
	0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

	-						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	—	—	REFOMD	CTMUMD	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	 1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

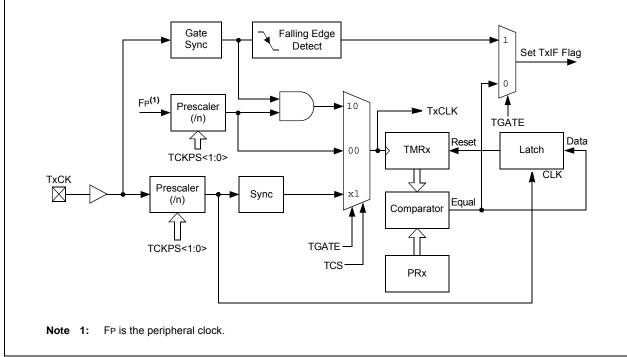
 $\ensuremath{\textcircled{}^\circ}$ 2011-2013 Microchip Technology Inc.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R<6:0>

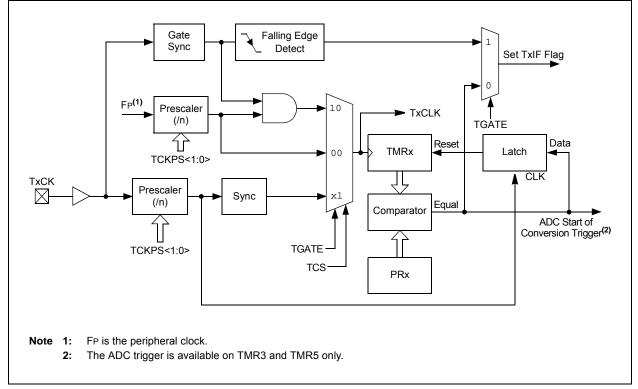
TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.


3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

12.2 Timer1 Control Register


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹⁾	—	TSIDL	—	_	—	_	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾				
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
		o								
bit 15	TON: Timer1 1 = Starts 16-									
	0 = Stops 16-									
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	TSIDL: Timer	1 Stop in Idle N	/lode bit							
		ues module op			ldle mode					
	0 = Continues module operation in Idle mode									
bit 12-7	-	ted: Read as '								
bit 6		r1 Gated Time	Accumulation	h Enable bit						
	When TCS = This bit is igno									
	When TCS =									
		e accumulatio								
		e accumulatio		0.1.1.1.1.1						
bit 5-4		: Timer1 Input	Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	-	ted: Read as '								
bit 2		er1 External Clo	ock Input Synd	chronization S	elect bit ⁽¹⁾					
	When TCS =									
		izes external c synchronize e>		nut						
	When TCS =	•		iput						
	This bit is igno									
bit 1	TCS: Timer1	Clock Source S	Select bit ⁽¹⁾							
	1 = External c 0 = Internal cl	clock is from pi ock (FP)	n, T1CK (on th	ne rising edge)	•					
bit 0	Unimplemen	ted: Read as '	0'							
	nen Timer1 is er empts by user s					SYNC = 1, TON	\ = 1), any			

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

17.1 QEI Resources

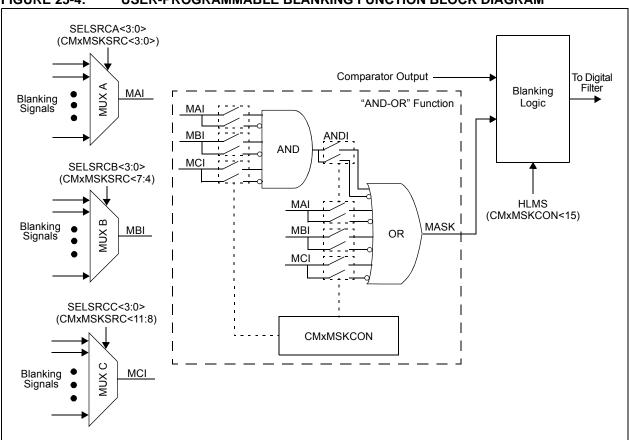
Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

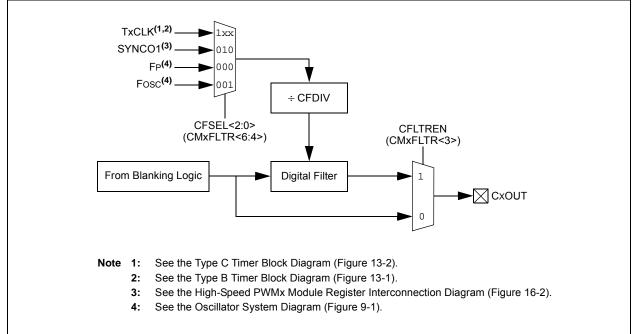
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


	23-2: Al	DICONZ. ADCI	CONTROL REG	ISIER Z						
R/W-0	R/W-	0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFO	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7	OWIT					Borim	bit			
Legend:										
R = Readable	, hit	W = Writable	bit I	l – Llnimolo	monted hit rea	d oo 'O'				
					mented bit, read					
-n = Value at	POR	'1' = Bit is se	t 't)' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits					
	Value	VREFH	VREFL							
	000	Avdd	Avss							
	001	External VREF+	Avss							
	010	Avdd	External VREF-							
	011	External VREF+	External VREF-							
	1xx	Avdd	Avss							
bit 12-11	Unimple	emented: Read as	ʻ0'							
bit 10	CSCNA: Input Scan Select bit									
	1 = Scans inputs for CH0+ during Sample MUXA									
	0 = Does	s not scan inputs	C .							
bit 9-8	CHPS<1:0>: Channel Select bits									
	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':									
		nverts CH0, CH1, C								
		nverts CH0 and CH nverts CH0	11							
bit 7		Buffer Fill Status bit	(oply valid when F							
					ne user applicat	ion should acco	ee data in th			
	1 = ADC is currently filling the second half of the buffer; the user application should access data in the first half of the buffer									
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in th			
	seco	ond half of the buffe	er							
bit 6-2	SMPI<4	:0>: Increment Rate	e bits							
	When ADDMAEN = 0:									
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation									
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation									
	•									
	x0001 = Generates interrupt after completion of every 2nd sample/conversion operation									
	x0000 = Generates interrupt after completion of every sample/conversion operation									
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	1A address after a	omplotion o	of overy 32nd s	mplo/convorsi	on operation			
		Increments the DN								
	•									
	•									
	•					., .				
	00001 -	Increments the DI	"A address offer a	omplation o	t avany 2nd aar					

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed


- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 27-1: DEVID: DEVICE ID REGISTER

	egend: R = Read-Only bit U = Unimplemented bit						
bit 7							bit 0
			DEVID	<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVID<	:15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVID<2	23:16>(1)			
R	R	R	R	R	R	R	R

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8>(1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend: R =	Read-only bit			U = Unimplem	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Тур.	Max.	Units	tions					
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	4EP32GP/MC20X				
DC60d	30	100	μA	-40°C					
DC60a	35	100	μA	+25°C	3.3V				
DC60b	150	200	μA	+85°C	3.3V				
DC60c	250	500	μA	+125°C					
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP64GI	P50X, dsPIC33EF	P64MC20X/50X and PIC2	4EP64GP/MC20X				
DC60d	25	100	μA	-40°C					
DC60a	30	100	μΑ	+25°C	2 2)/				
DC60b	150	350	μΑ	+85°C	3.3V				
DC60c	350	800	μΑ	+125°C					
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	24EP128GP/MC20X				
DC60d	30	100	μΑ	-40°C					
DC60a	35	100	μΑ	+25°C	3.3V				
DC60b	150	350	μΑ	+85°C	5.50				
DC60c	550	1000	μΑ	+125°C					
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	24EP256GP/MC20X				
DC60d	35	100	μΑ	-40°C					
DC60a	40	100	μΑ	+25°C	3.3V				
DC60b	250	450	μΑ	+85°C	5.57				
DC60c	1000	1200	μΑ	+125°C					
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	24EP512GP/MC20X				
DC60d	40	100	μΑ	-40°C					
DC60a	45	100	μΑ	+25°C	3.3V				
DC60b	350	800	μΑ	+85°C	0.0 v				
DC60c	1100	1500	μA	+125°C					

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

DC CHARACTERISTICS			(unless	d Operating otherwise g temperat	stated) ure -40°	C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
	liL	Input Leakage Current ^(1,2)						
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$	
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \mbox{ at high-impedance}, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$	

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			(unless	s otherv	rating Co vise stat perature	ed) -40°C	s: 3.0V to 3.6V \leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}$, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}$, $+85^{\circ}\text{C} < \text{TA} \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	
DO20 Voh	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Von1	Output High Voltage	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		4x Source Driver Pins ⁽²⁾	2.0 ⁽¹⁾	_	_		$IOH \geq -12 ~mA, ~VDD = 3.3 V$
			3.0(1)	_			$IOH \geq -7 \; mA, VDD = 3.3 V$
		Output High Voltage	1.5 ⁽¹⁾	—	—	V	$IOH \geq \textbf{-22 mA, VDD} = 3.3V$
		8x Source Driver Pins ⁽³⁾	2.0 ⁽¹⁾	—	—	1	IOH \geq -18 mA, VDD = 3.3V
			3.0(1)	_	—	1	IOH \geq -10 mA, VDD = 3.3V

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \mbox{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O W			
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +150^{\circ}C \end{array}$				
Parameter No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Operating Voltage							
HDC10	Supply Voltage						
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.	
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.		