

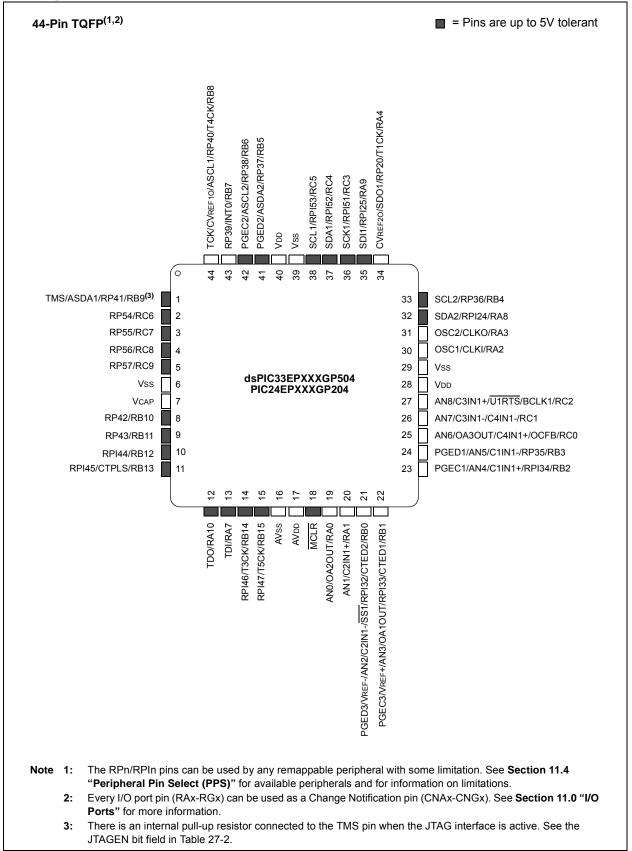
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

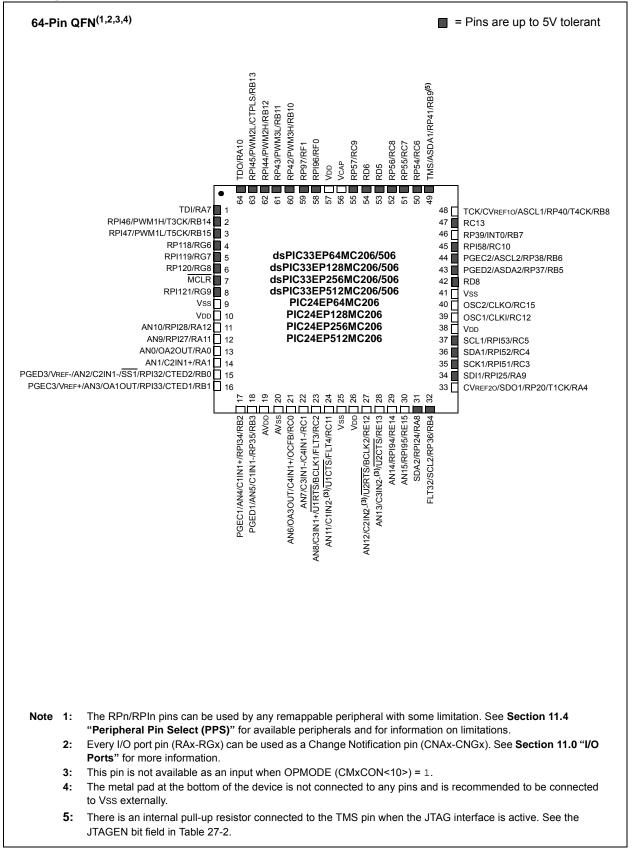
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI

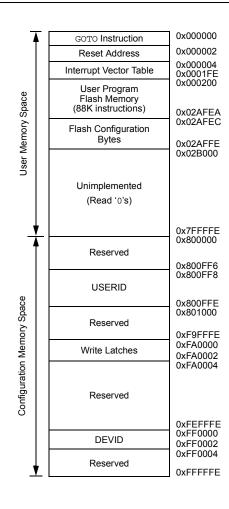
Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512mc202-e-mm


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)


3.7 CPU Control Registers

REGISTER	3-1: SR: CI	PU STATUS I	REGISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15							bit 8
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2	IPL1	IPL0	RA	N	OV	Z	С
bit 7	·	•		•			bit (
Legend:		C = Clearable	e bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	OA: Accumul	ator A Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator A has over	flowed				
	0 = Accumula	ator A has not o	verflowed				
bit 14	OB: Accumul	ator B Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator B has over	flowed				
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
		ator A is saturat ator A is not sat		en saturated at	some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
	1 = Accumula	ator B is saturat ator B is not sat	ted or has bee		some time		
bit 11		B Combined A		vorflow Status	ы#(1)		
		ators A or B have		vernow Status	DIL		
		ccumulators A		erflowed			
bit 10		B Combined Ad			(1)		
					urated at some	time	
	0 = Neither A	ccumulators A	or B are satur	ated			
bit 9	DA: DO Loop	Active bit ⁽¹⁾					
	1 = DO loop is	s in progress					
	0 = DO loop is	s not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
		out from the 4th sult occurred	low-order bit (for byte-sized c	lata) or 8th low-	order bit (for wo	rd-sized data
	0 = No carry			oit (for byte-siz	ed data) or 8th	low-order bit (f	or word-size
	his bit is available						-
L	he IPL<2:0> bits evel. The value ir PL<3> = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E		F	PWM2IP<2:0)>		Р	WM1IP<2:	0>			_		—	_	-		4400
IPC24	0870		_	_	_	-	_	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004
IPC35	0886			JTAGIP<2:0	>	-		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888		I	PTG0IP<2:0)>	-	PT	GWDTIP<	2:0>	_	P	GSTEPIP<2:	:0>	_	_	_	_	4440
IPC37	088A	_	_		—	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	•	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_	_				_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—		—	_	_	_				DAE	DOOVR	_	—	_		0000
INTCON4	08C6	_	_		—	_	_	_	_	_		_	_	—	—	_	SGHT	0000
INTTREG	08C8	_	—	-	—		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	'IN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BI	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	><3:0>			F6BI	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>		-		xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462					:15:8>							EID<	-				xxxx
C1RXF9SID	0464					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466					:15:8>							EID<					xxxx
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-2	23: E	CAN1 I	REGIST	ER MA	P WHE	N WIN	(CICIE	<l1<0></l1<0>	•) = 1 FC	OR dsPIC	33EPX	XXMC/G	P50X D	EVICES	ONLY (NUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470	SID<10:3> SID<2:0> — EXIDE — EID<17:16> ::								xxxx								
C1RXF12EID	0472	EID<15:8> EID<7:0> xx								xxxx								
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) TARIE 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾				
bit 15							bit 8				
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾			OSWEN				
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR						
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'								
bit 15	-	ted: Read as									
bit 14-12		Current Oscill			()						
		C Oscillator (F C Oscillator (F									
		ower RC Oscil									
	100 = Reserv		()								
		y Oscillator (X		h PLL							
		y Oscillator (X									
		C Oscillator (F C Oscillator (F		le-by-N and Pl	LL (FRCPLL)						
bit 11		ted: Read as	,								
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)							
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n							
		C Oscillator (F		le-by-16							
		ower RC Oscil	ator (LPRC)								
	100 = Reserv	/ed y Oscillator (X									
		y Oscillator (X		IFLL							
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)						
		C Oscillator (F		,	,						
bit 7		Clock Lock Ena									
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and				
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified					
bit 6		Lock Enable b		-	-						
	1 = I/O lock is	s active									
	0 = I/O lock is	s not active									
bit 5	LOCK: PLL L	ock Status bit	(read-only)								
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled					
Note 1:	Writes to this regis						ʻdsPIC33/				
2:	Direct clock switch This applies to clo	4 Family Reference Manual" (available from the Microchip web site) for details. t clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. applies to clock switches in either direction. In these instances, the application must switch to FRC as a transitional clock source between the two PLL modes.									
0	This bit should only										

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

11.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable b	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
bit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) 011 = Capture mode, every rising edge (Simple Capture mode)
	010 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	ted: Read as	ʻ0'							
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPIx Mas	ter modes only	/)					
	1 = Internal S	Plx clock is di	sabled, pin fun	ctions as I/O	-					
	0 = Internal S	PIx clock is er	nabled							
bit 11	DISSDO: Dis	able SDOx Pir	n bit							
			y the module; p	oin functions as	s I/O					
		is controlled b	•							
bit 10	MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits)									
	1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits)									
bit 9		ata Input Sam	. ,							
	Master mode		pie i nase bit							
		-	t end of data o	utput time						
			t middle of data							
	Slave mode:									
			SPIx is used i	n Slave mode.						
bit 8		lock Edge Sele								
					clock state to lo ock state to activ					
bit 7			bit (Slave mo							
		s used for Slav								
				is controlled b	by port function					
bit 6		Polarity Select								
			nigh level; activ ow level; active							
bit 5		ter Mode Enal		C						
	1 = Master m	ode								
	0 = Slave mo	de								
Note 1: T	he CKE bit is not	used in Frame	d SPI modes I	Program this hi	it to '0' for Fram	ed SPI modes (FRMEN = ⁻			
	his bit must be cl									
<u> </u>										

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

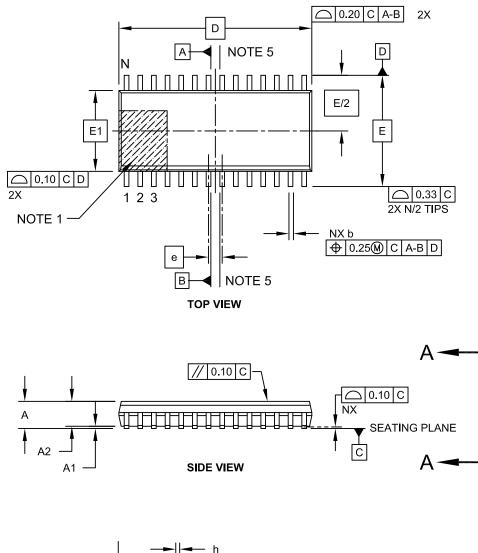
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

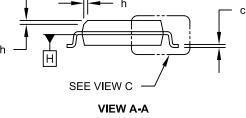
REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER
	(m = 0,2,4,6; n = 1,3,5,7)

	(•	,_, ., ., .,	-,-,-,				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7			•				bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-8	See Definitio	n for bits<7:0>,	Controls Buffe	ar n			
bit 7		RX Buffer Sele		51 11			
		Ren is a transm					
		RBn is a receive					
bit 6	TXABTm: M	essage Aborteo	d bit ⁽¹⁾				
	1 = Message						
	0 = Message	completed tran	nsmission succ	cessfully			
bit 5	TXLARBm: N	Message Lost A	Arbitration bit ⁽¹⁾)			
		lost arbitration did not lose ar					
bit 4	•	ror Detected D		•			
		or occurred wh			ent		
	0 = A bus err	or did not occu	r while the me	ssage was bei	ing sent		
bit 3	TXREQm: M	essage Send R	Request bit				
	sent		-		ally clears wher	n the message	is successfully
	•	the bit to '0' wh	•	•	abort		
bit 2		uto-Remote Tra					
		emote transmit emote transmit	•				
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits			
	-	message prior	•				
	0	ermediate mes					
		ermediate mess message priori					
. –			-				
Note 1: ⊤	his bit is cleared	when IXREQ	s set.				

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

Base Instr # Assembly Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc ⁽¹⁾	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83 x	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

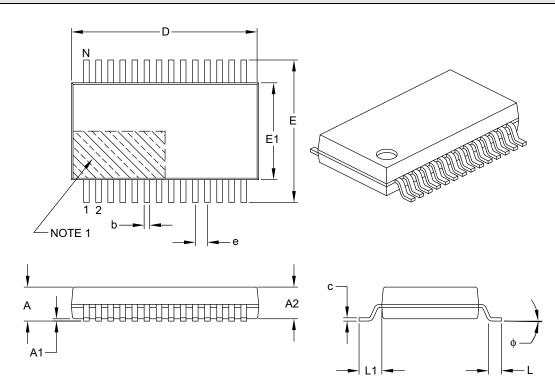

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)


Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

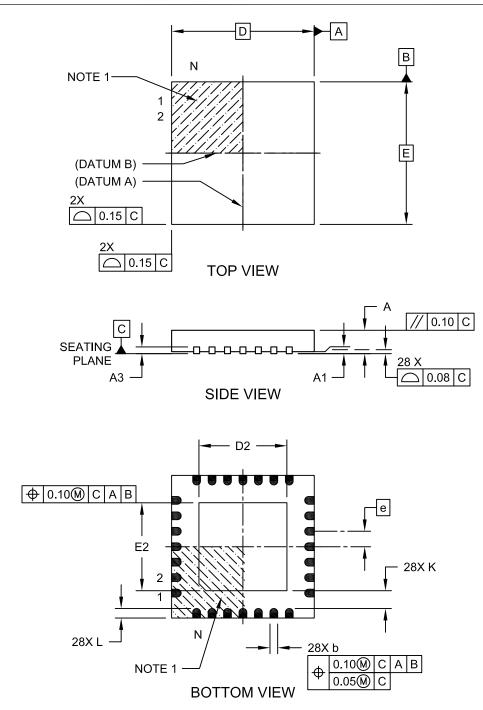
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dime	Dimension Limits		NOM	MAX		
Number of Pins	N	28				
Pitch	е		0.65 BSC			
Overall Height	A	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	ф	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

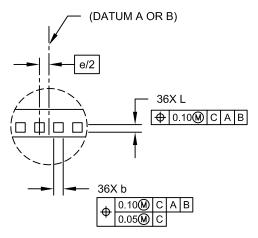
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

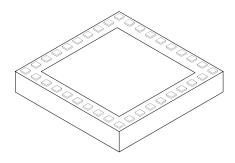

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-124C Sheet 1 of 2

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

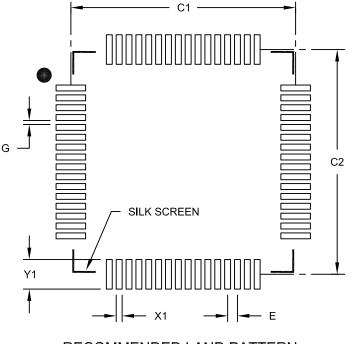
	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν	36			
Number of Pins per Side	ND		10		
Number of Pins per Side	NE		8		
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60	3.75	3.90	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.75	3.90	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)