

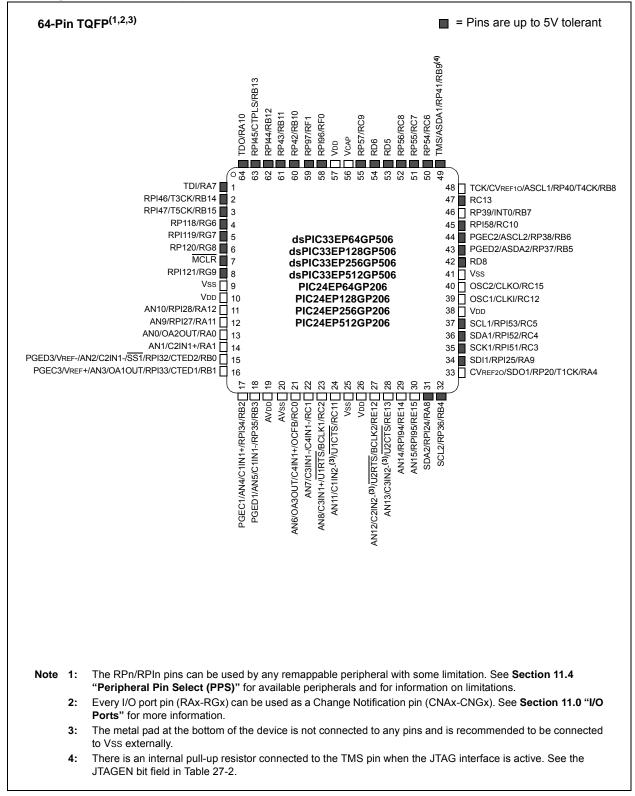
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512mc202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Referenced Sources

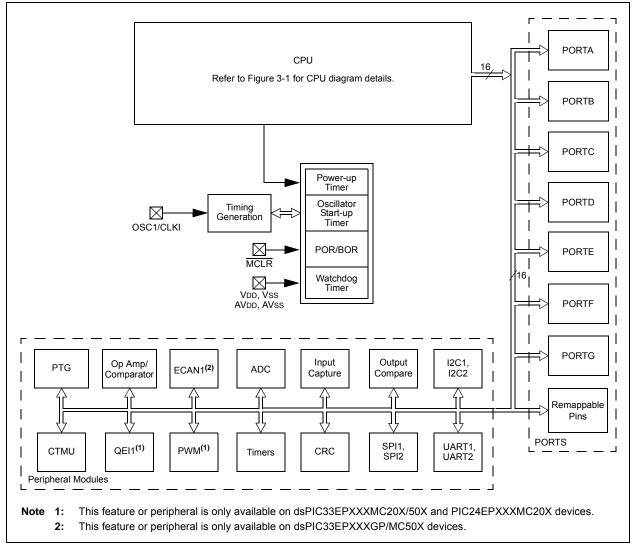
This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

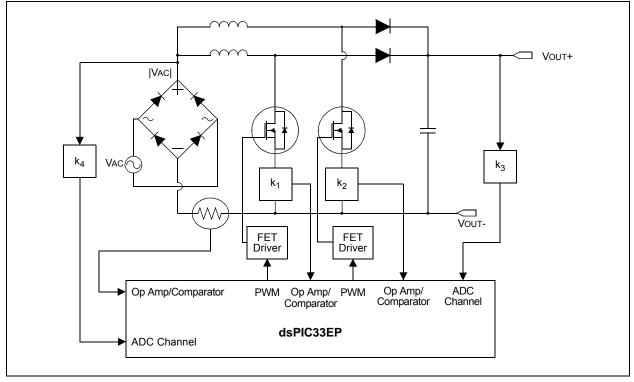
> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

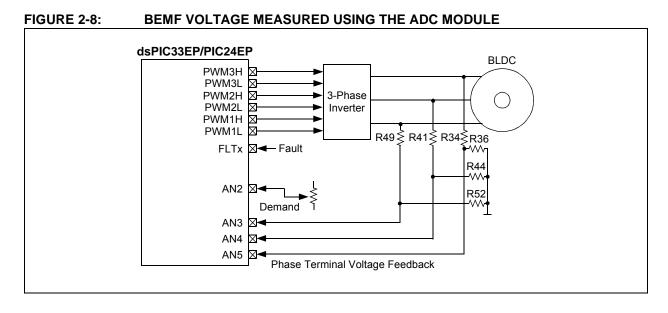
- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.


dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.


Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

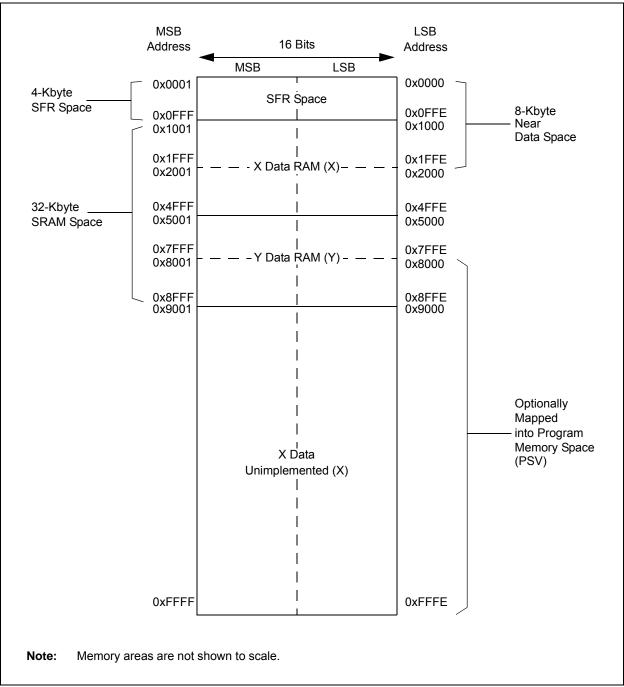

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

FIGURE 2-7: INTERLEAVED PFC

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tra	insmit and R	eceive Buff	er Registe	r						0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	ŝ	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_		_	_	—	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register									0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description					
File Register Direct	The address of the file register is specified explicitly.					
Register Direct	The contents of a register are accessed directly.					
Register Indirect	The contents of Wn form the Effective Address (EA).					
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.					
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.					
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.					
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.					

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC20X AND PIC24EPXXXMC20X DEVICES ONLY)

	-					-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP1R<6:	0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		_	—	—
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8		6:0>: Assign PV 1-2 for input pin		•	on Input 1 to the	e Corresponding	g RPn Pin bits
	1111001 =	Input tied to RP	1121				
	•						
	•						
		Input tied to CM	P1				
		Input tied to Vss					
bit 7-0		nted: Read as '					
			-				

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD				
bit 15			•				bit 8				
	D 4 4	D 0.01 4	D 444		DAMA	DAMA	DAMO				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0 FLTPOL ⁽²⁾	R/W-0	R/W-0				
FLTSRC4 bit 7	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLIPOL-	FLTMOD1	FLTMOD0 bit				
							DI				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Seleo	ct for PWM Ger	nerator # bits					
	11111 = Fault 32										
	11110 = Reserved										
	• 01100 = Reserved										
	01011 = Comparator 4										
		Amp/Comparat	or 3								
	•	Amp/Comparat									
	01000 = Op Amp/Comparator 1										
	00111 = Reserved										
	00110 = Reserved										
	00101 = Reserved										
	00100 = Reserved										
	00011 = Fault 4										
	00010 = Fault 3										
	00001 = Fault 2										
	00000 = Fau	(<i>)</i>			~						
bit 9	CLPOL: Current-Limit Polarity for PWM Generator # bit ⁽²⁾										
	1 = The selected current-limit source is active-low										
	0 = The selec	cted current-lim	it source is ac	tive-high							
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generator	r # bit						
		imit mode is er imit mode is di									
	ne PWMLOCK			<6>) is a '1', th	e IOCONx regi	ster can only be	e written aftei				
the	unlock sequen	ce has been ex	ecuted.								

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXH	LD<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXF	ILD<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	x = Bit is unkr	nown				

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		QEIIC	<31:24>					
						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		QEIIC	<23:16>					
						bit 0		
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is u			nown		
	R/W-0	R/W-0 R/W-0 it W = Writable I	QEIIC R/W-0 R/W-0 QEIIC QEIIC	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplen	QEIIC<31:24> R/W-0 R/W-0 R/W-0 QEIIC<23:16> it W = Writable bit U = Unimplemented bit, real	QEIIC<31:24> R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<23:16>		

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEI	C<7:0>				
bit 7							bit C	
Legend:								
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown	

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

NOTES:

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op Amp/Comparator

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGA	DJ<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGA	DJ<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGL0<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGL0<7:0>										
bit 7	bit 7 bit 0									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN-0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING				
	CONTROL REGISTER				

R/W-0									
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown			
bit 15	HLMS: High	or Low-Level N	Asking Select	bits					
	•		-		erted ('0') compa	rator signal from	n propagatin		
					erted ('1') compa				
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	OCEN: OR G	Sate C Input Er	able bit						
	1 = MCI is co	nnected to OR	gate						
	0 = MCI is no	ot connected to	OR gate						
bit 12	OCNEN: OR	Gate C Input I	nverted Enable	e bit					
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 								
			-	jate					
bit 11	OBEN: OR Gate B Input Enable bit								
	1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate								
bit 10			•						
	OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate								
		-		e dit					
	1 = Inverted I	-	ed to OR gate						
bit 9	1 = Inverted 0 = Inverted	MBI is connect	ed to OR gate nected to OR g						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G	MBI is connect MBI is not conr	ed to OR gate nected to OR g able bit						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	MBI is connect MBI is not conr Gate A Input En	ed to OR gate nected to OR g able bit gate						
bit 9 bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no	MBI is connect MBI is not conr Gate A Input En nnected to OR	ed to OR gate nected to OR g hable bit gate OR gate	jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect	ed to OR gate nected to OR g able bit gate OR gate nverted Enable ed to OR gate	jate e bit					
bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable ed to OR gate nected to OR g	jate e bit jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	MBI is connect MBI is not conr Gate A Input En Innected to OR It connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable nected to OR gate nected to OR g	pate e bit pate e bit					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0ANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g hable bit OR gate NVerted Enable nected to OR gate nected to OR gate nected to OR gate	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = Inverted I 0 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not conr Gate Output In ANDI is connect ANDI is not cor	ed to OR gate nected to OR g able bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nuected to OR gat	pate e bit pate e bit e					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 0 = Inverted J 0 = Inverted J 0 = Inverted J	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is not cor Gate Output E	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR g nverted Enable cted to OR gat nected to OR gat nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connect Gate Output En connected to O not connected t Gate C Input En	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR gate nected to OR gate to OR gate nable bit R gate o OR gate finable bit	pate e bit pate e bit e					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gat the data to OR gate nected to OR gate nable bit R gate o OR gate finable bit D gate	pate e bit pate e bit e					
bit 8 bit 7 bit 6 bit 5	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is no	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect ANDI is not connected to Gate Output En connected to On to connected to AN of connected to AN of connected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable det to OR gate nected to OR gate nected to OR gate the dto OR gate the dto OR gate shable bit R gate o OR gate finable bit D gate AND gate	ate e bit ate bit e gate					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is co 0 = MCI is co 0 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable de to OR gate nected to OR gate nected to OR gate the to OR gate the bit R gate o OR gate able bit D gate AND gate Inverted Enable	pate e bit pate e bit gate					

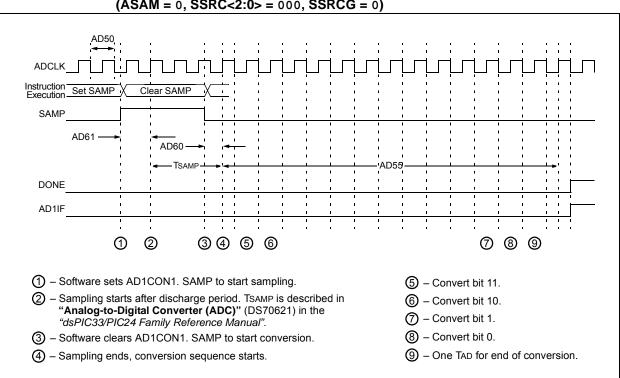

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period	_	400	600	μS	
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period
SY12 Twdt		Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS	
SY30	TBOR	BOR Pulse Width (low)	1	_		μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	—	30	μS	
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS	
SY38	Toscdlprc	LPRC Oscillator Start-up Delay		—	70	μS	

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

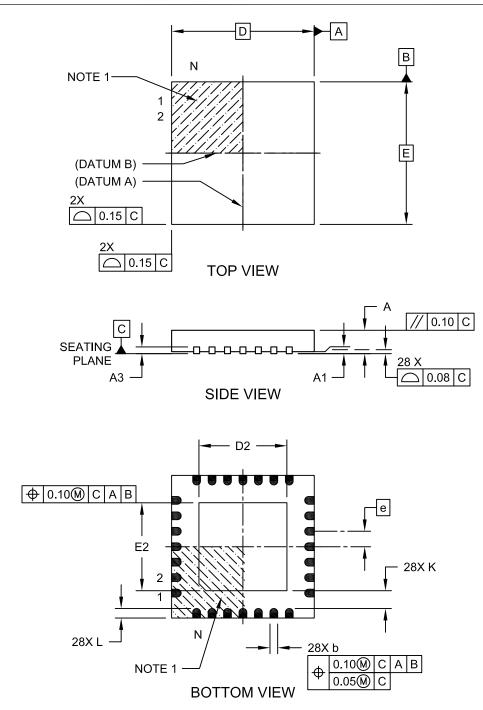


FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

NOTES:

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2