

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512mc204t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
	DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
hit 1	PND: Dounding Mode Select hit(1)

- bit 1 **RND:** Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding is enabled
 - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a separate 16-bit-wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-7 through Figure 4-16.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words).

The base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

4.4.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

FIGURE 4-17: EDS MEMORY MAP

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1000	I/O	RP40	101 0101	—	
010 1001	I/O	RP41	101 0110	—	—
010 1010	I/O	RP42	101 0111		—
010 1011	I/O	RP43	101 1000		—
010 1100	I	RPI44	101 1001	—	—
101 1010	—	—	110 1101		—
101 1011			110 1110		—
101 1100	_		110 1111		—
101 1101	—	—	111 0000		—
101 1110	Ι	RPI94	111 0001		—
101 1111	Ι	RPI95	111 0010	—	—
110 0000	I	RPI96	111 0011	_	—
110 0001	I/O	RP97	111 0100	—	—
110 0010	—	—	111 0101	—	—
110 0011	_		111 0110	I/O	RP118
110 0100	—	—	111 0111	Ι	RPI119
110 0101		_	111 1000	I/O	RP120
110 0110		_	111 1001	I	RPI121
110 0111	_	_	111 1010	—	_
110 1000	—		111 1011	—	<u> </u>
110 1001	_	_	111 1100		_
110 1010	—	_	111 1101	—	—
110 1011	—		111 1110	—	<u> </u>
110 1100	—		111 1111	—	_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				SCK2INR<6:0	>						
bit 15	·						bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				SDI2R<6:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown				
1.11.4 F			- ¹								
DIT 15	Unimpleme										
bit 14-8	SCK2INR<6:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111001 =	Input tied to RPI	121								
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input fied to Vss									
bit 7	Unimpleme	nted: Read as	0'								
bit 6-0	SDI2R<6:0> (see Table 1	 Assign SPI2 D 1-2 for input pin 	ata Input (SE selection nur	012) to the Corre nbers)	esponding RP	n Pin bits					
	1111001 =	Input tied to RPI	121								
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input tied to Vss									

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	C = Clearable	e bit		
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	IOWN
bit 15-14	Unimplemen	ted: Read as '0			01.1	.,	
DIT 13			er Greater Tha	n or Equal Con	npare Status b	It	
	0 = POS1CN	T < QEI1GEC					
bit 12	PCHEQIEN:	Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i	s enabled					
	0 = Interrupt i	s disabled					
bit 11	PCLEQIRQ:	Position Counte	r Less Than o	r Equal Compa	are Status bit		
	$1 = POS1CN^{-1}$	$T \leq QEI1LEC$					
bit 10		Position Counte	r Less Than or	r Equal Compa	re Interrupt En	able bit	
	1 = Interrupt i	s enabled					
	0 = Interrupt i	s disabled					
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	atus bit			
	1 = Overflow	has occurred					
h it 0		ow has occurred) n Overflevv linte	ann at Eachlach	.:.		
DIL 8	1 = Interrupt i	Position Counte	r Overnow Inte	errupt Enable b	nt		
	0 = Interrupt i	s disabled					
bit 7	PCIIRQ: Posi	ition Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
	1 = POS1CN	T was reinitialize	ed				
	$0 = POS1CN^{-1}$	T was not reiniti	alized				
bit 6	PCIIEN: Posit	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i	s enabled					
bit 5		Velocity Counte	r Overflow Sta	tus bit			
Sit O	1 = Overflow	has occurred					
	0 = No overflo	ow has not occu	irred				
bit 4	VELOVIEN: \	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
		s disabled		ua hit			
DIL 3		at has occurred	me ⊨vent Stati	us dil			
	0 = No Home	event has occure	irred				

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

11-0		11-0		P/M/-0			P///_0	
0-0						SMP		
			DISSOR	0100000	WODE 10	Sivil	bit 8	
bit 10							bit 0	
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN(2) CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾	
bit 7							bit 0	
L								
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimpleme	nted: Read as	0'					
bit 12	DISSCK: Dis	sable SCKx Pin	bit (SPIx Mas	ter modes only	()			
	1 = Internal 3	SPIx clock is di SPIx clock is er	sabled, pin fun Jabled	ctions as I/O				
bit 11		sable SDOx Pir	n hit					
	1 = SDOx pi	n is not used by	/ the module: r	oin functions as	s I/O			
	0 = SDOx pi	n is controlled b	by the module					
bit 10	MODE16: W	ord/Byte Comn	nunication Sele	ect bit				
	1 = Commur	nication is word	-wide (16 bits)					
1.11.0	0 = Commur	ication is byte-	wide (8 bits)					
bit 9	SMP: SPIX L	Jata Input Sam	ole Phase bit					
	1 = Input dat	. a is sampled at	end of data o	utput time				
	0 = Input dat	a is sampled at	middle of data	a output time				
	Slave mode:		0 DI	<u>.</u>				
h it 0	SMP must b	e cleared when	SPIX IS USED I	n Slave mode.				
BIT 8	1 = Serial ou	NOCK Edge Sele	CL DIL'''	on from active (clock state to Id	lle clock state (i	refer to hit 6)	
		itput data chang	ges on transitio	on from Idle clo	ock state to activ	ve clock state (refer to bit 6)	
bit 7	SSEN: Slave	e Select Enable	bit (Slave mo	de) ⁽²⁾			,	
	1 = <u>SSx</u> pin	is used for Slav	e mode					
	0 = SSx pin	is not used by t	he module; pir	is controlled b	by port function			
bit 6	CKP: Clock	Polarity Select	bit					
	1 = Idle state 0 = Idle state	e for clock is a h	ngh level; activ	e state is a lov	v level h level			
bit 5	MSTEN: Ma	ster Mode Enal	ole bit	s etate ie a mg.				
	1 = Master n	node						
	0 = Slave me	ode						
Note 1:	The CKE bit is not	used in Frame	d SPI modes. I	Program this bi	t to '0' for Fram	ed SPI modes (FRMEN = 1).	
2:	This bit must be c	leared when FI	RMEN = 1.				/-	

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>			F14B	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
-	F13B	P<3:0>			F12B	P<3:0>		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
L								
bit 15-12	F15BP<3:0	>: RX Buffer Ma	sk for Filter 1	5 bits				
	1111 = Filte	er hits received in	n RX FIFO bu	uffer				
	1110 = Filte	r hits received in	n RX Buffer 1	4				
	•							
	•							
	•	n hito no ocivio d iv						
	0001 = Filte	r hits received ii	DRX Builler I					
h:+ 44 0				4 h:ta (a a ma a ma)				
DIT 11-8	F14BP<3:0	>: RX Buffer Ma	SK for Fliter 1	4 bits (same va	iues as bits<15):12>)		
bit 7-4	F13BP<3:0	>: RX Buffer Ma	sk for Filter 1	3 bits (same va	lues as bits<15	5:12>)		
bit 3-0	F12BP<3:0	RX Buffer Ma	sk for Filter 1	2 bits (same va	lues as bits<15	5:12>)		

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7(2	²⁾ ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾		
bit 7							bit 0		
Legend:									
R = Reada		vv = vvritable t	DIT		nented bit, read				
-n = value	at POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	nown		
bit 15	ADRC: ADC1 Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock								
bit 14-13	Unimplement	ted: Read as '0	3						
bit 12-8	SAMC<4:0>:	Auto-Sample T	ime bits ⁽¹⁾						
	11111 = 31 T. • • • • • •	AD							
hit 7 0	00000 = 0 IA		ion Clock Colo	at hita(2)					
Dit 7-0	<pre>/-0 ADCS<7:0>: ADC1 Conversion Clock Select bits⁽²⁾ 11111111 = TP • (ADCS<7:0> + 1) = TP • 256 = TAD</pre>								
Note 1: 2:	This bit is only use This bit is not used	d if SSRC<2:0> if ADRC (AD10	· (AD1CON1< CON3<15>) =	7:5>) = 111 ar 1.	nd SSRCG (AD	1CON1<4>) =	0.		

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

REGISTER 2	5-3: CM4C	ON: COMPA	RATOR 4 CO	ONTROL RE	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_			CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0		CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7	•		1				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15	CON: Compa	rator Enable bi	t				
	1 = Comparat	tor is enabled					
	0 = Comparat	tor is disabled					
bit 14	COE: Compa	rator Output Er	hable bit				
	1 = Comparat	tor output is pre	esent on the C	xOUT pin			
bit 12		or output is inte	elliai Uliiy Dolority Soloot	hit			
DIL 13	1 = Comparat	tor output is inv		DI			
	0 = Comparat	tor output is not	t inverted				
bit 12-10	Unimplemen	ted: Read as '	כ'				
bit 9	CEVT: Compa	arator Event bit					
	1 = Compara	tor event acco	ording to EVF	POL<1:0> sett	ings occurred;	disables future	triggers and
	interrupts	s until the bit is	cleared				
hit 0		areter Output h					
DILO	When CPOL	= 0 (non-invert	nt ad polarity):				
	1 = VIN + > VII	<u>- 0 (11011-1117C110</u> N-	cu polanty).				
	0 = VIN + < VII	N-					
	When CPOL	= 1 (inverted po	olarity):				
	1 = VIN + < VII	N-					
bit 7.6		 Triagor/Eyopt 		arity Soloct bits	-		
bit 7-0	11 = Trigger/e		nenerated on	any change of	s f the comparato	r output (while (CEVT = 0
	10 = Trigger/e output (v	event/interrupt g while CEVT = 0	jenerated only	on high-to-low	v transition of the	e polarity selecte	ed comparator
	<u>If CPOL</u> Low-to-t	= 1 (inverted p high transition of	olarity): of the compara	ator output.			
	If CPOL High-to-	= 0 (non-inver low transition o	<u>ted polarity):</u> f the compara	ator output.			
	01 = Trigger/e output (v	event/interrupt o while CEVT = 0	generated only)	on low-to-high	n transition of the	e polarity selecte	ed comparator
	<u>If CPOL</u> High-to-	= 1 (inverted p low transition o	<u>olarity):</u> f the compara	ator output.			
	<u>If CPOL</u> Low-to-ł	<u>= 0 (non-inver</u> nigh transition o	ted polarity): of the compara	ator output.			
	00 = Trigger/e	event/interrupt	generation is	disabled			
				1	() (D) D		

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_				—		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0
Logondi							
R = Reada	able hit	W = Writable	hit	= Inimpler	mented hit read	ae 'O'	
-n = Value	at POR	(1) = Rit is set	bit	'0' = Bit is cle	ared	x = Rit is unkr	nown
II Value		1 Bit lo oot					lowin
bit 15-7	Unimplemen	nted: Read as '	0'				
bit 6-4	CFSEL<2:0>	Comparator I	-ilter Input Clo	ck Select bits			
	111 = T5CLK	(1) (1)					
	110 = T4CLK	< ⁽²⁾					
	101 = T3CLK	<(1) <(2)					
	100 = 12CLP	ved					
	010 = SYNC	01 ⁽³⁾					
	001 = Fosc ⁽⁴	4)					
	000 = FP ⁽⁴⁾						
bit 3	CFLTREN: C	Comparator Filte	er Enable bit				
	1 = Digital filt	er is enabled					
hit 2-0		Comparator F	ilter Clock Div	ide Select hits			
511 2-0	111 = Clock	Divide 1.128					
	110 = Clock	Divide 1:64					
	101 = Clock	Divide 1:32					
	100 = Clock	Divide 1:16					
	011 = Clock	Divide 1:8					
	001 = Clock	Divide 1:2					
	000 = Clock	Divide 1:1					
Note 1:	See the Type C Ti	mer Block Diac	ram (Figure 1	3-2).			
2:	See the Type B Tir	mer Block Diag	ram (Figure 1	ý 3-1).			

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	Acc(1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo()	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo\''	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
10	SEIM	SEIM	I		1	1	None
		SEIM	WREG		1	1	None
71	SFTAC	SETM	ws Acc,Wn ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB,
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB,

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TADLE 30-23. THVIER I EATERINAL CLOCK THVIING REQUIREIVIEN 13	TABLE 30-23:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾
---	--------------	-----------------	---------------------	------------------------------------

AC CH	ARACTERIS	TICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ \\ -40^\circ C \leq TA \leq +12 \end{array}$			V to 3.6 +85°C +125°C	.6V C for Industrial °C for Extended	
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions	
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	35	—	—	ns		
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	10	—	—	ns		
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)	
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz		
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns		

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
SP70	FscP	Maximum SCK2 Input Frequency	_		Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—			ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30			ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120			ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	-	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: • Table 30-1 • Table 30-4 • Table 30-12 • Table 30-14 • Table 30-15 • Table 30-16 • Table 30-56 • Table 30-57 • Table 30-58 • Table 30-59 • Table 30-60

Ρ

Packaging	
Details	505
Marking	. 479, 481
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	175
Available Peripherals	175
Available Pins	175
Control	175
Control Registers	183
Input Mapping	176
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	178
Selectable Input Sources	177
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	163
Clock Frequency	
Clock Switching	163
Instruction-Based Modes	163
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	117
Data Access from Program Memory Using	
Table Instructions	118
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	48
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	118
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	65
CRC	88
CTMU	97
DMAC	. 98
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
FCAN1 (WIN (C1CTRI 1) = 1) for	
dsPIC33EPXXXMC/GP50X Devices	86
12C1 and 12C2	82
Input Capture 1 through Input Capture 4	76
Interrunt Controller	
	69
Interrupt Controller	05
	71
	/ 1
	73
(USFIC35EFXXXIVIC30X Devices)	75
	66
Interrupt Controller	00
(DIC24EDXXXMC20X Dovision)	67
	07
	97 02
NVM	93
Output Compare 1 through Output Compare 4	97
Derinherel Din Select Innut	//
	04
(dSPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	00
(dsPIC33EPXXXIIIC20X Devices)	92
	~
(dsPIC33EPXXXMC50X Devices)	91
	~~
(PIC24EPXXXGP20X Devices)	90
	~~
(PIC24EPXXXMC20X Devices)	90
	~~
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503,	
PIC24EPXXXGP/MC203 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC204/504,	
PIC24EPXXXGP/MC204 Devices)	89
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC206/506,	<i>.</i> .
PIC24EPXXGP/MC206 Devices)	89
PMD (dsPIC33EPXXXGP50X Devices)	95
PMD (dsPIC33EPXXXMC20X Devices)	96
PMD (dsPIC33EPXXXMC50X Devices)	95
PMD (PIC24EPXXXGP20X Devices)	94