

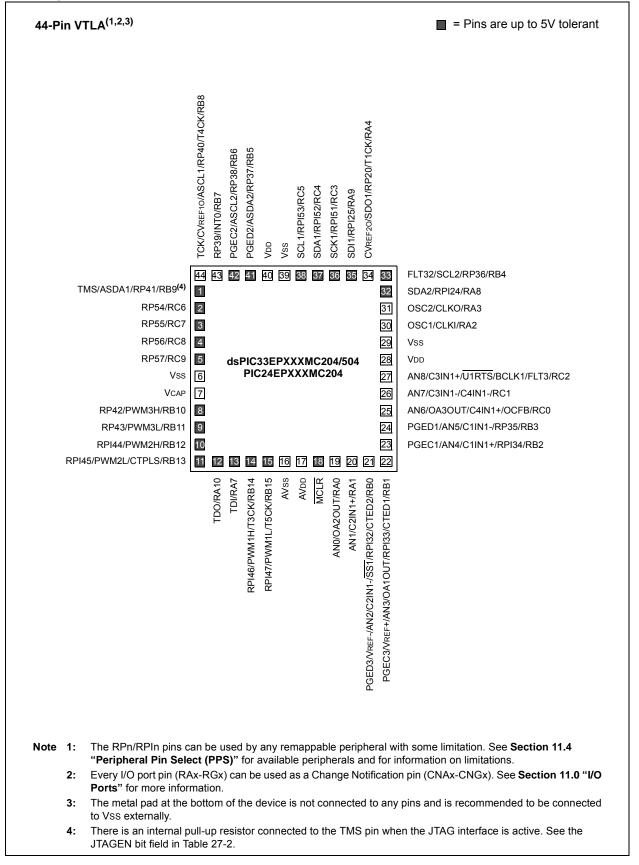
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512mc204t-i-mv

Email: info@E-XFL.COM

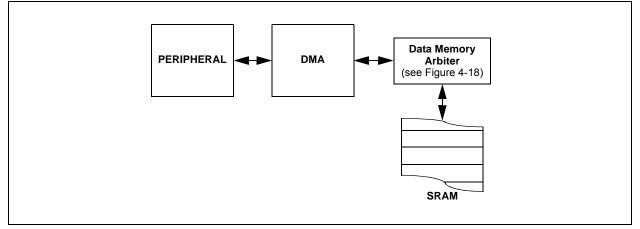
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER MODULE

REGISTER	<u>R 10-2: PMD</u> 2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_		—		IC4MD	IC3MD	IC2MD	IC1MD				
bit 15							bit				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
				OC4MD	OC3MD	OC2MD	OC1MD				
bit 7							bit				
Legend:	1.1.1										
R = Readab		W = Writable b	Dit	•	nented bit, rea						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as '0	,								
bit 11	-										
	•	IC4MD: Input Capture 4 Module Disable bit 1 = Input Capture 4 module is disabled									
	0 = Input Cap	oture 4 module is	s enabled								
bit 10	IC3MD: Input Capture 3 Module Disable bit										
		1 = Input Capture 3 module is disabled									
		oture 3 module is									
bit 9		t Capture 2 Mod									
		oture 2 module is oture 2 module is									
bit 8	IC1MD: Input	t Capture 1 Mod	ule Disable bit								
	1 = Input Cap	oture 1 module is oture 1 module is	s disabled								
bit 7-4		ted: Read as '0									
bit 3	OC4MD: Out	put Compare 4	Module Disable	e bit							
		1 = Output Compare 4 module is disabled									
	-	ompare 4 modu									
bit 2	OC3MD: Output Compare 3 Module Disable bit										
	•	 1 = Output Compare 3 module is disabled 0 = Output Compare 3 module is enabled 									
L:1 4	-	-		. h.:4							
bit 1		put Compare 2									
	\perp – Output Co	ompare 2 modu									
	0 = Output Co	ompare 2 modul	le is enabled								
bit 0		ompare 2 modul put Compare 1		e bit							
bit 0	OC1MD: Out	ompare 2 modul put Compare 1 l ompare 1 modul	Module Disable	e bit							

~

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP118R<5:0>							
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—		—	_	_	—	_			
bit 7							bit 0			

Legend:					
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP120R<5:0>							
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = No Sync or Trigger source for ICx
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = CTMU module synchronizes or triggers ICx
 - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$
 - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
 - $11001 = CMP2 \text{ module synchronizes or triggers ICx}^{(5)}$
 - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 module synchronizes or triggers ICx
 - 10010 = IC3 module synchronizes or triggers ICx
 - 10001 = IC2 module synchronizes or triggers ICx
 - 10000 = IC1 module synchronizes or triggers ICx
 - 01111 = Timer5 synchronizes or triggers ICx
 - 01110 = Timer4 synchronizes or triggers ICx
 - 01101 = Timer3 synchronizes or triggers ICx (default)
 - 01100 = Timer2 synchronizes or triggers ICx
 - 01011 = Timer1 synchronizes or triggers ICx
 - 01010 = PTGOx module synchronizes or triggers $ICx^{(6)}$
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = OC4 module synchronizes or triggers ICx
 - 00011 = OC3 module synchronizes or triggers ICx
 - 00010 = OC2 module synchronizes or triggers ICx
 - 00001 = OC1 module synchronizes or triggers ICx
 - 00000 = No Sync or Trigger source for ICx
- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1

PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

U-0 R/W-0 R/W R/W R/W </th <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
U-0 U-0 RW-0 <	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_	
- BCH ⁽¹⁾ BCL ⁽¹⁾ BPH BPHL BPLH BE <	bit 15							bit	
bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to sel	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' nn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Current-limit input 1 = Leading-Edge Blanking is not applied to selected current-limit input 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when Selected blanking signal is low 0 = No blanking when PWMxH dupt is high 0 = No blanking when PWMxH dupt signals) when PWMxH output is high 0 = No blanking when PWMxH tow Enable bit 1 = State blanking (of current-limit and/	_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 13 PLR: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is not applied to selected Fault input bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking signal is high 1 = State blanking	bit 7							bit	
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 11 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 11 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores fising edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking signal Figh Enable bit 1 = State blanking in Selected Blanking Singal High Enable bit ⁽¹⁾ 1 = State blanking in Sel	Legend:								
 PHR: PWMxH Rising Edge Trigger Enable bit Rising edge of PWMxH will trigger Leading-Edge Blanking counter	R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL Det Leading-Edge Blanking ignores ralling edge of PWMxL D = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = Leading-Edge Blanking Signal Liph Enable bit⁽¹⁾ 1 = State blanking (or current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No b	-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown	
 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 FLTLEBEN: Fault Input Leading-Edge Blanking Counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH output is nigh 0 = No bla	bit 15	1 = Rising ed	ge of PWMxH	will trigger Le	ading-Edge Bla				
 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL pLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking when selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH dutput is high 0 = No blanking when PWMxH Low Enable bit 1 = State blanking (of	bit 14	1 = Falling ed	lge of PWMxH	will trigger Le	eading-Edge Bla	0			
bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = No blanking when selected Blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when P	bit 13	1 = Rising ed	ge of PWMxL	will trigger Le	ading-Edge Bla				
 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high	bit 12	1 = Falling ed	lge of PWMxL	will trigger Le	ading-Edge Bla				
 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL Ligh Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL output is high 	bit 11	1 = Leading-E	Edge Blanking	is applied to	selected Fault in	nput			
bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 State blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit	bit 10	1 = Leading-E	Edge Blanking	is applied to	selected current	t-limit input			
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is low 	bit 9-6	Unimplemen	ted: Read as '	0'					
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 5	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is high	
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 4	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is low	
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 3	BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high							
bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 2	BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low							
bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL hking (of currer	High Enable I nt-limit and/or	bit Fault input sigr	nals) when PWN	/IxL output is hi	gh	
\sim i	bit 0	BPLL: Blanki 1 = State blar	ng in PWMxL I hking (of currer	Low Enable b nt-limit and/or	it Fault input sigr	nals) when PWN	/IxL output is lo	w	

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:		HC = Hardware	Cloarable bit								
R = Readab	le hit	W = Writable bi		II = I Inimpler	mented bit, rea	d as '0'					
-n = Value a		'1' = Bit is set	L .	'0' = Bit is cle		x = Bit is unk	nown				
							nown				
bit 15	12CEN: 12Cx	Enable bit									
		he I2Cx module					;				
	0 = Disables	the I2Cx module;	all l ² C™ pins	are controlled	by port functior	ıs					
bit 14	Unimplemen	ted: Read as '0'									
bit 13		x Stop in Idle Mo									
		ues module oper			dle mode						
bit 12		 0 = Continues module operation in Idle mode SCLREL: SCLx Release Control bit (when operating as I²C slave) 									
		1 = Releases SCLx clock									
		0 = Holds SCLx clock low (clock stretch)									
	<u>If STREN = 1:</u>										
	•	., software can w				,					
		ing of every slav reception. Hardw					t every slave				
	If STREN = 0	-									
		<u>.</u> , software can or	nly write '1' to re	elease clock). I	Hardware is cle	ar at the begir	ning of every				
	-	te transmission.			-	address byte re	eception.				
bit 11		ligent Peripheral									
	1 = IPMI mod 0 = IPMI mod	e is enabled; all	addresses are	Acknowledged	1						
bit 10			i+								
		A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address									
		is a 7-bit slave a									
bit 9	DISSLW: Dis	able Slew Rate C	Control bit								
		control is disable									
		control is enable									
bit 8		us Input Levels b		0145	c						
		/O pin thresholds SMBus input thre		n SMBus speci	fication						
bit 7		ral Call Enable b		ing as I ² C slav	/e)						
	1 = Enables in	terrupt when a ge all address disat	neral call addre	-		dule is enabled	for reception)				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERR	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERR	CNT<7:0>			
						bit 0
oit	W = Writable b	it	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MS	SK<1:0>	F6MSI	<1:0> F5MSK<1:0>		K<1:0>	F4MSK<1:0>	
bit 15		1					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	SK<1:0>	F2MS	<<1:0>	F1MS	K<1:0>	F0MS	K<1:0>
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'		d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	01 = Accept	ed ance Mask 2 reo ance Mask 1 reo ance Mask 0 reo	gisters contain	mask			
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bit	s (same values	s as bits<15:14	>)	
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bit	s (same values	s as bits<15:14	>)	
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bit	s (same values	s as bits<15:14	>)	
bit 7-6	F3MSK<1:0	>: Mask Source	for Filter 3 bit	s (same values	s as bits<15:14	>)	
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bit	s (same values	s as bits<15:14	>)	
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bit	s (same values	s as bits<15:14	>)	

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 2			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	leared x = Bit is unknown		nown

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
				yte 4			
bit 7				-			bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u		x = Bit is unki	nown

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

DIL 10-12	Uninpienienieu. Reau as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	1111 = FLT4 1110 = FLT2
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTWIN<1:0>	Watchdog Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 pin 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 pin 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN ⁽²⁾	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

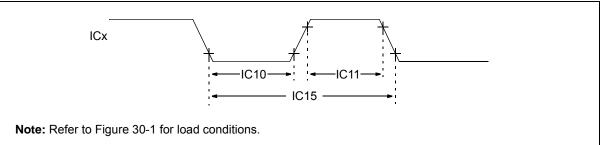
Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

Field	Description
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED))
	······································	,

DC CH	ARACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
	liL	Input Leakage Current ^(1,2)						
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in at high-impedance} \end{split}$	
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	


TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

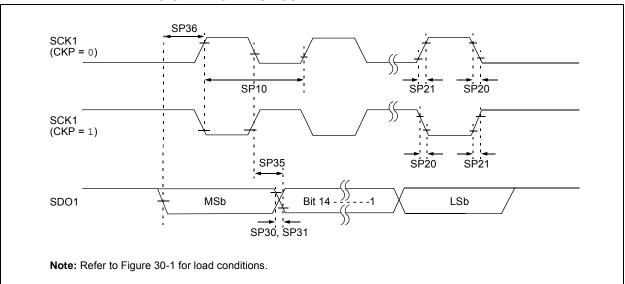


TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Max. Units Conditions					
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15		
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15 N = prescale va (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

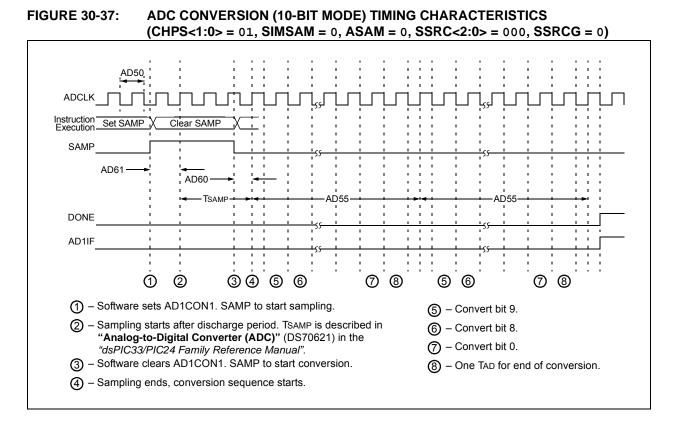
TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHA	RACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

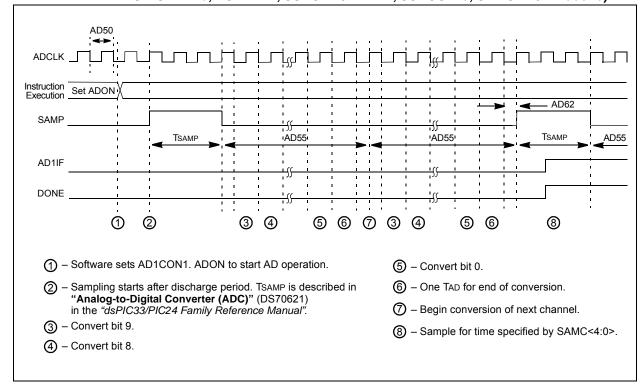
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.


4: Assumes 50 pF load on all SPI1 pins.

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾ Max		Units	Conditions	
IM10	TLO:SCL	Clock Low Time	Clock Low Time 100 kHz mode Tcy/2 (BRC		_	μS		
			400 kHz mode	TCY/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS		
		Ū	400 kHz mode	Tcy/2 (BRG + 2)		μ S		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μ S		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		100	ns	-	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		300	ns	-	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2		μs	-	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μ S	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)		μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μ s	After this period, the	
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)		μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	1	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs		
		Hold Time	400 kHz mode	TCY/2 (BRG + 2)	—	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns		
		From Clock	400 kHz mode	—	1000	ns	İ.	
			1 MHz mode ⁽²⁾	—	400	ns	İ.	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	_	μ s	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μ s	transmission can star	
IM50	Св	Bus Capacitive L		_	400	pF		
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	(Note 3)	


TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

DS70000657H-page 464