

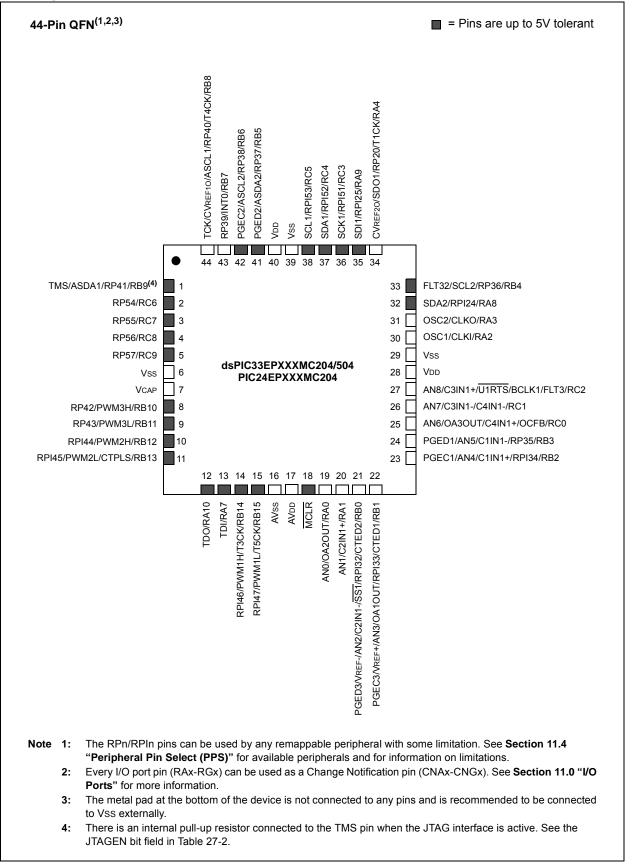
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

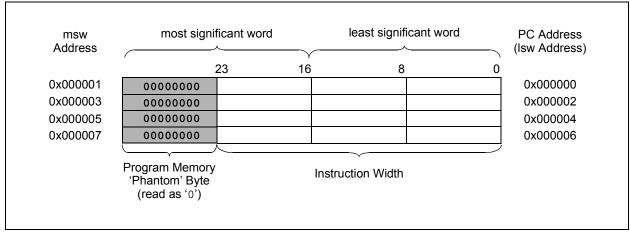
Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512mc206t-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	—		_	—	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	—		_	—	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF	_	—		_	—	_	C1TXIF	_	—	CRCIF	U2EIF	U1EIF	—	0000
IFS6	080C	_	_	_	_	—		_	—	_	_	_	—	_	—	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—		_	—	_	_	_	—	_	—	_	—	0000
IFS9	0812			_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824			_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	—	—		_		_	_	_			—	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	—				_	—	C1TXIE			CRCIE	U2EIE	U1EIE		0000
IEC8	0830	JTAGIE	ICDIE	—	—		_		_	_	_			—	_	_	_	0000
IEC9	0832	_	_	—	—		_		_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840			T1IP<2:0>	>	_	(OC1IP<2:0	>	_	IC1IP<2:0>		_	INT0IP<2:0>			4444	
IPC1	0842			T2IP<2:0>	>	_	(C2IP<2:0	>	_		IC2IP<2:0>		_	DMA0IP<2:0>		4444	
IPC2	0844		ι	J1RXIP<2:0	0>	_	Ş	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	— T3IP<2:0>			4444	
IPC3	0846			_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		— U1TXIP<2:0>			0444	
IPC4	0848			CNIP<2:0	>	_		CMIP<2:0	>	_	I	WI2C1IP<2:0	>	_	S	I2C1IP<2:0>		4444
IPC5	084A			_	_	_	_	_	_	_	_	_	_	_		NT1IP<2:0>		0004
IPC6	084C			T4IP<2:0>	>	_	(C4IP<2:0	>	_		OC3IP<2:0>		_	DMA2IP<2:0>			4444
IPC7	084E		ι	U2TXIP<2:()>	_	L	I2RXIP<2:	0>	_		INT2IP<2:0> —		T5IP<2:0>		4444		
IPC8	0850			C1IP<2:0>	>	_	C	1RXIP<2:	0>	_		SPI2IP<2:0>	•	_	S	PI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	D	MA3IP<2:0>		0444
IPC11	0856	_	_	_	_	_		_	—	_	_	_	—	_	_	_	_	0000
IPC12	0858	_	_	_	_	_	N	II2C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC17	0862	_	_	_	_	_	C	1TXIP<2:)>	_	_	_	—	_	_	_	_	0400
IPC19	0866	_	_	—	_	_		_	—	_		CTMUIP<2:0	>	_	—			0040
IPC35	0886	_		JTAGIP<2:0)>	_		ICDIP<2:0	>	_	_	—	_	_	—	_	_	4400
IPC36	0888	_	F	PTG0IP<2:	0>	—	PT	GWDTIP<	2:0>	_	PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	_	_	_	_	_	F	TG3IP<2:)>	_		PTG2IP<2:0	>	_	Р	TG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEB1R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA1R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111001 =	1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	121 P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1 1111001 =	>: Assign A (QE 1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	selection nun 121 P1		n Pin bits		

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: R = Readable	bit	C = Writable b W = Writable l			n to clear the bit mented bit, read		
bit 7							bit 0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
							2 0
bit 15							bit 8
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
	 1 = Transmitter or receiver is in Error Warning state 0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt request has occurred

-n = Value at POR

R-0	R-0	R-0	R-0	R-0	R-0	R-0			
		TERR	CNT<7:0>						
						bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0			
		RERR	CNT<7:0>						
						bit 0			
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow						
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'			

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

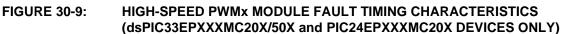
22.1.1 KEY RESOURCES

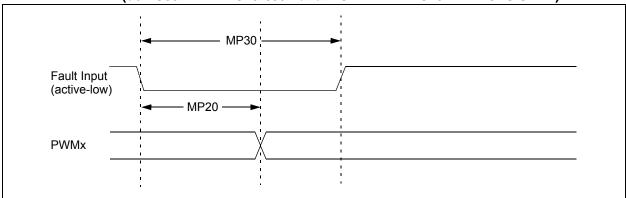
- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

22.2 CTMU Control Registers

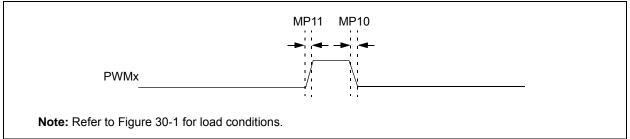
REGISTER 2	22-1: CTM	UCON1: CTMU	J CONTROL	REGISTER	1			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	_		<u> </u>		_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkn	own		
bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled								
bit 14	Unimpleme	nted: Read as '0	3					
bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode								
bit 12 TGEN: Time Generation Enable bit								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1


	 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion
	0 = CTMU does not trigger ADC start of conversion
bit 7-0	Unimplemented: Read as '0'


1 = Enables edge delay generation0 = Disables edge delay generation

EDGEN: Edge Enable bit


bit 11

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time		—	_	ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	_	—	_	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for External				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_			ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—		—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30		—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5.5	—	5.5	LSb	+85°C $<$ TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1	—	1	LSb	+85°C $<$ TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10	_	10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5	—	5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5	—	5	LSb	+85°C < TA \leq +125°C (Note 2)
AD25a	—	Monotonicity	—				Guaranteed
		Dynamic	Performa	ance (12-	-Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68		dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3		bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
ADC Accuracy (12-Bit Mode) ⁽¹⁾										
HAD20a	Nr	Resolution ⁽³⁾	12	2 Data B	its	bits				
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾				
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz				

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

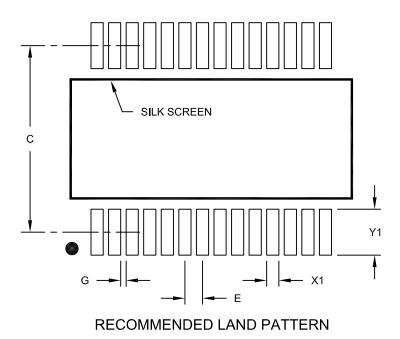
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions					
	ADC Accuracy (10-Bit Mode) ⁽¹⁾										
HAD20b	Nr	Resolution ⁽³⁾	10	10 Data Bits		bits					
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD22b	DNL	Differential Nonlinearity	-0.25	-	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
HAD24b	EOFF	Offset Error	-1.25		1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
	Dynamic Performance (10-Bit Mode) ⁽²⁾										
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz					


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

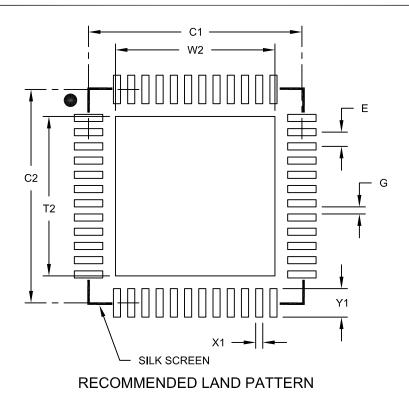
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			4.45	
Optional Center Pad Length	T2			4.45	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A