

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit 8
							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA(1)	SATB	SATDW ⁽¹⁾	ACCSAT(1)	IPL3(3)	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7							bit 0
Legend:		C - Clearable	hit				
R = Reada	hle hit	W = Writable	hit	U = Unimple	mented hit read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			1				
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	ing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits ⁽¹⁾			
	11 = Reserve	ed nine multiplies	are mixed sign	,			
	01 = DSP eng	gine multiplies	are unsigned	1			
	00 = DSP eng	gine multiplies	are signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control bi	it(1,2)			
	1 = Terminate 0 = No effect	es executing DO	loop at end o	f current loop	iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status bi	ts ⁽¹⁾			
	111 = 7 do lo	ops are active					
	•						
	•						
	001 = 1 DO IO	on is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾				
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit ⁽¹⁾				
	1 = Accumula	ator B saturatio	n is enabled				
	0 = Accumula	ator B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾		
	1 = Data Space	ce write satura ce write satura	tion is enabled tion is disabled	1			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit ⁽¹⁾			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (3)			
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7			
	0 = CPU inter	riupt Priority Le	evel is / or less	5			
Note 1: 2:	This bit is available This bit is always r	e on dsPIC33E read as '0'.	PXXXMC20X/	50X and dsPI	C33EPXXXGP	50X devices on	ly.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	—	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	—	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808		_	CTMUIF	_	—	_	—	_	_	_	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	_	—	_	_	_	_	_	_	_	_	_	—		0000
IFS6	080C	_	_	_	_	—	—	—	_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	—	—	—	_	_	_	_	_	_	_	_		0000
IFS9	0812		_	—	_	—	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824		_	—	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826		_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828		_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC6	082C		_	—	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	—	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
IEC9	0832		_	—	_	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840			T1IP<2:0>	`	_		OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842			T2IP<2:0>	•	_		OC2IP<2:0)>	_		IC2IP<2:0>		_	[OMA0IP<2:0>		4444
IPC2	0844			U1RXIP<2:	0>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	DMA1IP<2:	0>	_		AD1IP<2:0>	,	_		J1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0	>	_		MI2C1IP<2:0	>	_	9	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	, ,	_		OC4IP<2:0)>	_		OC3IP<2:0>	>	_	[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0)>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850		_	_	_	_	(C1RXIP<2:	0>	_		SPI2IP<2:0	>	_	5	SPI2EIP<2:0>		0444
IPC9	0852		_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_	[DMA3IP<2:0>		0444
IPC12	0858		_	_	_	_	N	/II2C2IP<2:	:0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC14	085C		_	_	_	_		QEI1IP<2:)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>	>	_	_	_	_	4440
IPC19	0866	_	_	—	_	_	_		_	_		CTMUIP<2:0	>	_	_	_		0040
IPC23	086E	_		PWM2IP<2:	0>	_	F	WM1IP<2	:0>	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			—	-	-	_	—	—	—	—	0000
RPINR1	06A2	_	_	_	_	_	—	_	—	_	INT2R<6:0>							0000
RPINR3	06A6	06A6 — — — — — — — — —					—	_	T2CKR<6:0>							0000		
RPINR7	06AE	_				IC2R<6:0>				_	IC1R<6:0>							0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_		_		—	_	OCFAR<6:0>							0000
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>						(QEA1R<6:0	>			0000
RPINR15	06BE				Н	OME1R<6:0	0>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4		_	_	_	_	—	_	_	_	U1RXR<6:0>						0000	
RPINR19	06C6		_	_	_	_	—	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:	0>			_				SDI2R<6:0>	•			0000
RPINR23	06CE		_	_	_	_	—	_	_	_				SS2R<6:0>				0000
RPINR26	06D4							_	_	_	_	_	_	_	_	_	0000	
RPINR37	37 06EA — SYNCI1R<6:0>					_	_	_	_	_	_	_	_	0000				
RPINR38	06EC	- DTCMP1R<6:0>					_						0000					
RPINR39	RPINR39 06EE — DTCMP3R<6:0>					_	DTCMP2R<6:0>						0000					

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	•			_	—	—	—	_	—	—		0000
RPINR1	06A2	—	_								INT2R<6:0>							
RPINR3	06A6	—	_	_	—	_	_	—	—	_			-	T2CKR<6:0	>			0000
RPINR7	06AE	—				IC2R<6:0>				_		IC1R<6:0>						
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_	U2RXR<6:0>						0000	
RPINR22	06CC	—			S	CK2INR<6:0)>			_	— SDI2R<6:0>						0000	
RPINR23	06CE	_	_	_	_	—	_	_	_	_	SS2R<6:0>					0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	То	protec	t	agains	st	misal	stack			
	acc	esses,	W	15<0>	is	fixed	to	'0'	by	the
	hard	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved
	•
	• 100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS
bit 3-0	<pre>SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event</pre>
	0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN					
bit 15					•		bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7							bit 0					
Legend:		HC = Hardware	Clearable bit									
R = Readable	e bit	W = Writable bit	t	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 15	12CEN: 12Cx	Enable bit										
	1 = Enables t	he I2Cx module a	and configures	the SDAx and	SCLx pins as	serial port pins	;					
h it 4.4			all I-C ···· pins a	are controlled	by port function	15						
DIL 14		ted: Read as 0	da hit									
DIE 13	1 - Discontinu	x Stop in Idle Mo	de bli ation whon dow	ico ontore an l	dla mada							
	0 = Continues module operation in Idle mode											
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)											
	1 = Releases SCLx clock											
	0 = Holds SCLx clock low (clock stretch)											
	$\frac{\text{If STREN} = 1}{\text{Distance}}$	<u>:</u>			· · · · · · · · · · · · · · · · · · ·							
	Bit is R/W (i.e	., software can w	rite '0' to initiate o data byte tra	e stretch and w	rite '1' to relea	se clock). Harc	dware is clear					
	address byte	reception. Hardw	are is clear at	the end of eve	ry slave data b	yte reception.	l every slave					
	If STREN = 0	<u>:</u>			-							
	Bit is R/S (i.e.	, software can on	ly write '1' to re	elease clock). I	Hardware is cle	ar at the begin	ning of every					
	slave data by		Hardware is cle	ar at the end o	of every slave a	address byte re	eception.					
bit 11	IPMIEN: Intel	ligent Peripheral	Management I	nterface (IPMI)) Enable bit							
	1 = IPMI mod 0 = IPMI mod	e is enabled, all a		Acknowledged	I							
bit 10	A10M: 10-Bit	Slave Address b	it									
	1 = I2CxADD	is a 10-bit slave	address									
	0 = I2CxADD	is a 7-bit slave a	ddress									
bit 9	DISSLW: Disa	able Slew Rate C	Control bit									
	1 = Slew rate 0 = Slew rate	control is disable control is enable	ed d									
bit 8	SMEN: SMBL	us Input Levels bi	t									
	1 = Enables I 0 = Disables \$	/O pin thresholds SMBus input thre	compliant with sholds	SMBus speci	fication							
bit 7	GCEN: Gene	ral Call Enable bi	it (when operat	ing as I ² C slav	re)							
	1 = Enables in 0 = General c	terrupt when a ge all address disab	neral call addre	ss is received ir	12CxRSR (mo	dule is enabled	for reception)					

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "**UART**" (DS70582) section in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UARTx module for transmit operation.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15B	P<3:0>			F14B	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	F13B	P<3:0>			F12B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
L							
bit 15-12	F15BP<3:0	>: RX Buffer Ma	sk for Filter 1	5 bits			
	1111 = Filte	er hits received in	n RX FIFO bu	uffer			
	1110 = Filte	r hits received in	n RX Buffer 1	4			
	•						
	•						
	•	n hito no ocivio d iv					
	0001 = Filte	r hits received ii					
h:+ 44 0				4 h:ta (a a ma a ma)			
DIT 11-8	F14BP<3:0	>: RX Buffer Ma	SK for Fliter 1	4 bits (same va	iues as bits<15):12>)	
bit 7-4	F13BP<3:0	>: RX Buffer Ma	sk for Filter 1	3 bits (same va	lues as bits<15	5:12>)	
bit 3-0	F12BP<3:0	RX Buffer Ma	sk for Filter 1	2 bits (same va	lues as bits<15	5:12>)	

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op Amp/Comparator

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAR	AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions				
DO31	TIOR	Port Output Rise Time	_	5	10	ns					
DO32	TIOF	Port Output Fall Time	—	5	10	ns					
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns					
DI40 TRBP CNx High or Low Time (input)			2		_	TCY					

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-34: ECAN_x MODULE I/O TIMING CHARACTERISTICS

TABLE 30-51: ECANx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time		_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	_	_	_	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns		
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.				
Note:	In the event the full Microchip part number cannot be marked on one line, it wi be carried over to the next line, thus limiting the number of available characters for customer-specific information.					

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	44				
Number of Pins per Side	ND	12				
Number of Pins per Side	NE	10				
Pitch	е	0.50 BSC				
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.025	-	0.075		
Overall Width	Е	6.00 BSC				
Exposed Pad Width	E2	4.40	4.55	4.70		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.40	4.55	4.70		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.20	0.25	0.30		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2