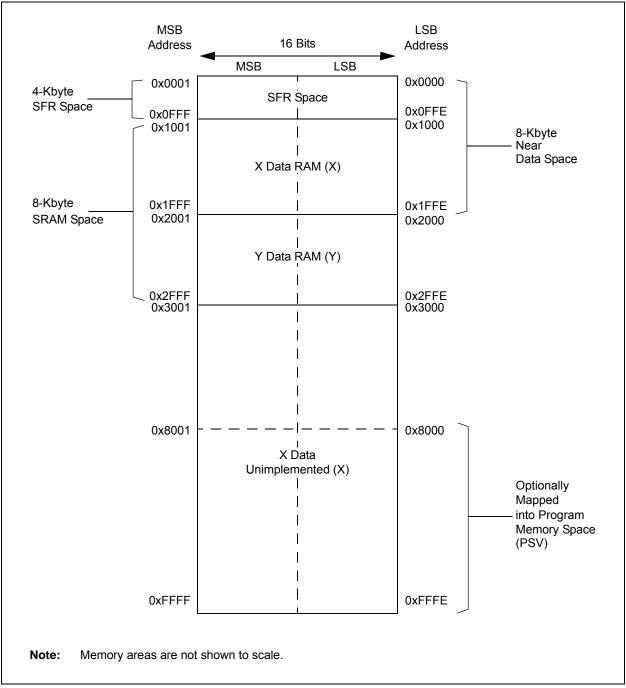


Welcome to E-XFL.COM

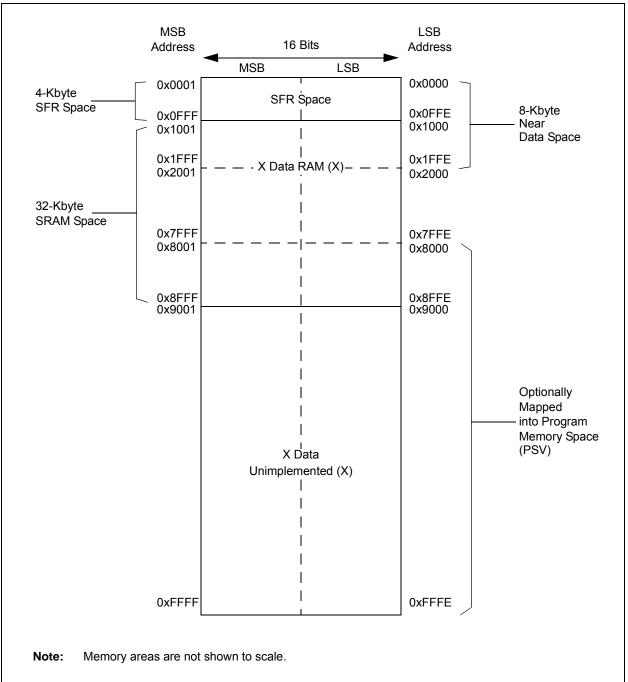
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_		_	_	_		_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	-	_	CTMUIF	_	_		—	_	_		_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		—	_	_		_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_		—	_	_		_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_		—	_	_		_	_	_	_	_	_	0000
IFS9	0812	_	_	_		_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	—	-	_		—	—	_	IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_		_	QEI1IE	PSEMIE	—	_	_	—	—	-	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE		_		—	—	_	_	—	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—		_	_	_	—	_	_	—	_		_	—		0000
IEC6	082C	_	_	_		_	_	_	—	_	_	—	_	-	_	—	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_		_	_	_	—	_	_	—	_	-	_	—	—	0000
IEC9	0832	_	_	_		_	_	_	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>				INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		-	[DMA0IP<2:0>		4444
IPC2	0844	_	-	U1RXIP<2:0	>	_	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	-		T3IP<2:0>		4444
IPC3	0846	_	_	—	—	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		-		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	—	—	_		—	—	_	_	—	—	-		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0)>			OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>			INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_	_	—	—	_		—	—	_		SPI2IP<2:0>	•	-	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_	_		_		IC4IP<2:0	>	_		IC3IP<2:0>		-	[DMA3IP<2:0>		0444
IPC12	0858	_	_	_		_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	-	_	—		0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866	_	_	—	—	_	—	—	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC23	086E	_	F	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	_	_	—	_	_	_	_	4400
IPC24	0870	_	_			_		_			_	_	_	_	F	PWM3IP<2:0>		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	_	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	_	_	-	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	_	_	_	—	03C0
PORTG	0E62			-	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64			-	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			-	_	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	_	_	_	0000
CNENG	0E68			-	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A			-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	_	_	_			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	-	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-5:	INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	_	—	—	—	—	_		
bit 15						•	bit 8		
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
—	—	DAE	DOOVR	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-6	Unimplemen	ted: Read as	'0'						
bit 5	DAE: DMA A	ddress Error S	Soft Trap Status	s bit					
	1 = DMA add	ress error soft	trap has occur	red					
	0 = DMA add	ress error soft	trap has not o	ccurred					
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit					
1 = DO stack overflow soft trap has occurred									

I = D0	Stack Overnow	3011 11 ap 11 a3	occurred
0 = DO	stack overflow	soft trap has	not occurred

bit 3-0	Unimplemented: Read as '0'
---------	----------------------------

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—		—	—	—	SGHT
bit 7					•		bit 0
Legend:							

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Logondi							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC<31:24>			
						bit 8
	DAM 0			DAMA	DAVO	
R/W-U	R/W-U			R/W-U	R/W-U	R/W-0
		QEIGE	EC<23:16>			
						bit (
R = Readable bit W = Writable bit			U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR			'0' = Bit is clea	ared	x = Bit is unkn	iown
		W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)

- 1 = RX FIFO is empty
- 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

- 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)
 - 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty
 - 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
 - 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location
 - 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
 - 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
 - 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
 - 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

bit 5

bit 8

bit 0

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

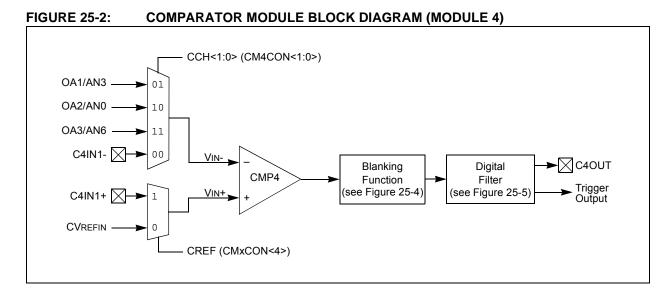
The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

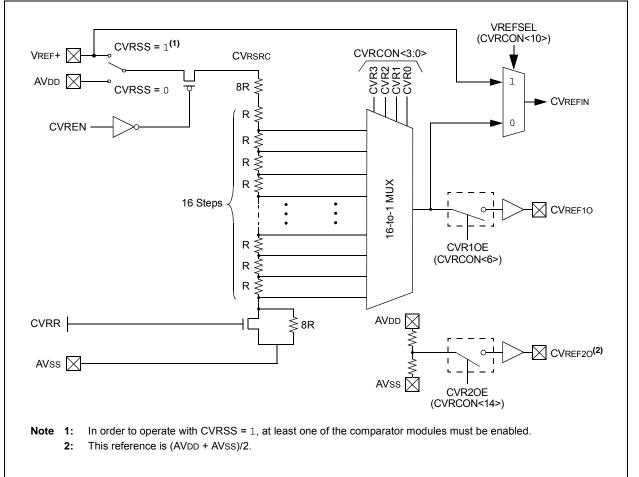
23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

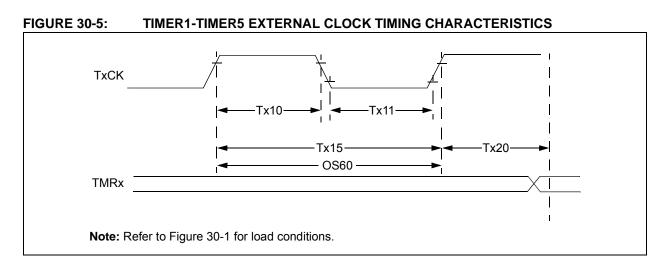

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.


Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools



REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

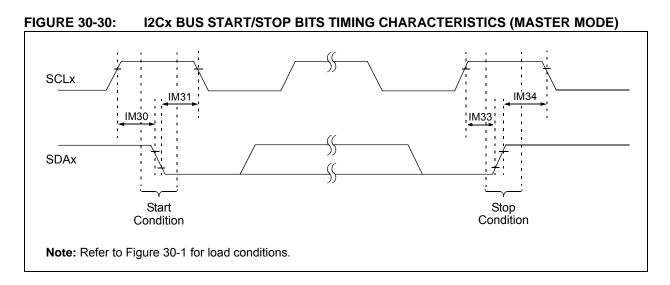
TABLE 30-23: TIME	1 EXTERNAL CLOCK TIMING REQUI	REMENTS ⁽¹⁾
-------------------	-------------------------------	------------------------

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				for Industrial	
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	_	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK o Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

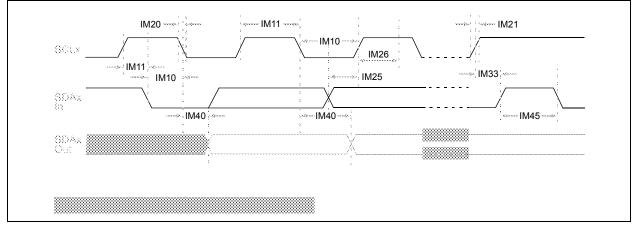
Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

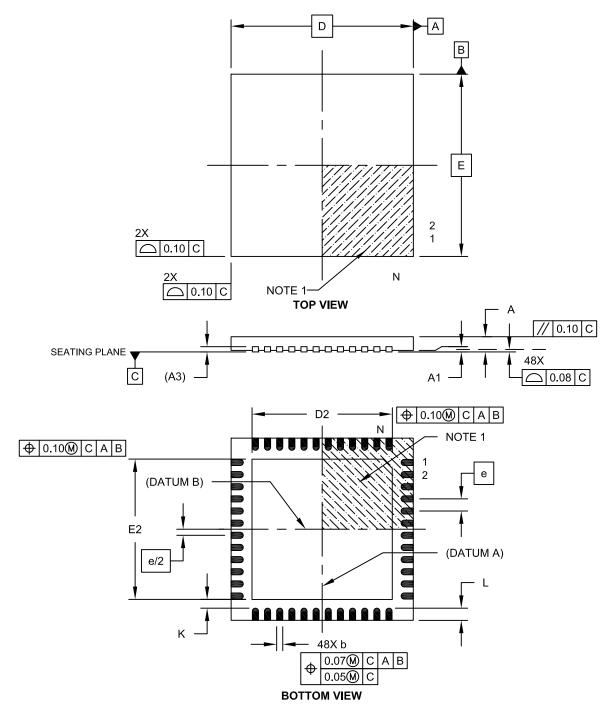
TABLE 30-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Op (unless othe Operating ter	erwise st	ated) ⁻ e -40°C	\leq Ta \leq +8	o 3.6V 85°C for Industrial 125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	_	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPI1 pins.

NOTES:

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

Ρ

Packaging	
Details	
Marking	
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	
Available Peripherals	175
Available Pins	175
Control	
Control Registers	
Input Mapping	
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	
Selectable Input Sources	
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	
Clock Frequency	
Clock Switching	
Instruction-Based Modes	
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	117
Data Access from Program Memory Using	
Table Instructions	118
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	48
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	118
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	
CRC	
CTMU	
DMAC	
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (WIN (C1CTRL1) = 1) for	
dsPIC33EPXXXMC/GP50X Devices	86
I2C1 and I2C2	
Input Capture 1 through Input Capture 4	
Interrupt Controller	70
(dsPIC33EPXXXGP50X Devices)	69
Interrupt Controller	00
(dsPIC33EPXXXMC20X Devices)	71
Interrupt Controller	/ 1
(dsPIC33EPXXXMC50X Devices)	73
	75
Interrupt Controller (PIC24EPXXXGP20X Devices)	66
Interrupt Controller	00
(PIC24EPXXXMC20X Devices)	67
JTAG Interface	
NVM	
Op Amp/Comparator	
Output Compare 1 through Output Compare 4	//
Peripheral Pin Select Input	04
(dsPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	00
(dsPIC33EPXXXMC20X Devices)	92
Peripheral Pin Select Input	01
(dsPIC33EPXXXMC50X Devices)	91
Peripheral Pin Select Input	~~~
(PIC24EPXXXGP20X Devices)	90
Peripheral Pin Select Input	~~
(PIC24EPXXXMC20X Devices)	90
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC202/502,	00
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503,	~~
PIC24EPXXXGP/MC203 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC204/504,	~~~
PIC24EPXXXGP/MC204 Devices)	89
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC206/506,	~~
PIC24EPXXGP/MC206 Devices)	
PMD (dsPIC33EPXXXGP50X Devices)	
PMD (dsPIC33EPXXXMC20X Devices)	
PMD (dsPIC33EPXXXMC50X Devices)	
PMD (PIC24EPXXXGP20X Devices)	94

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.