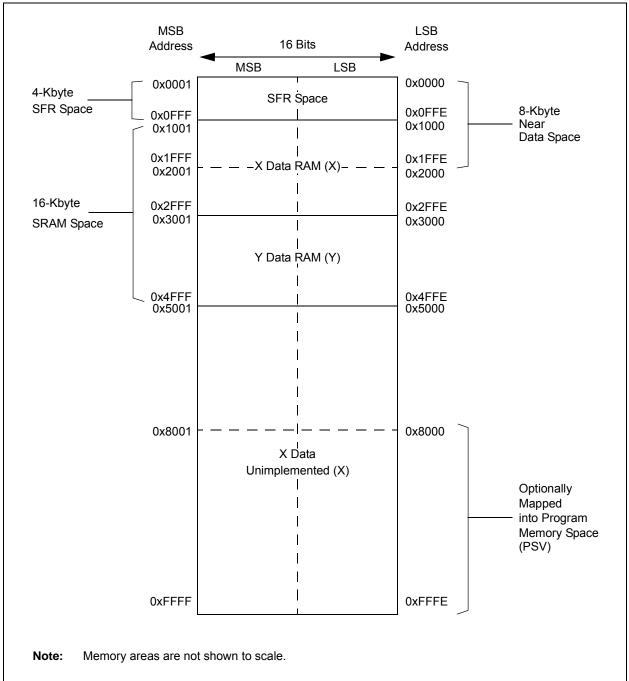
E·XFL

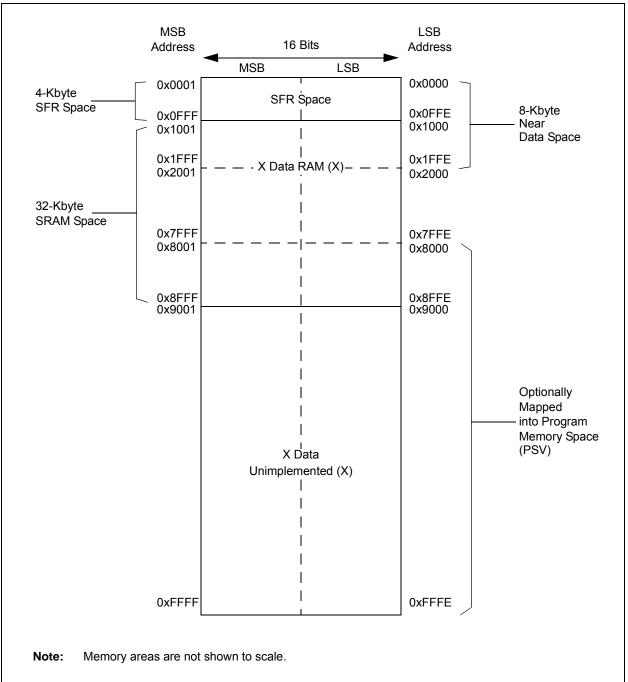
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES

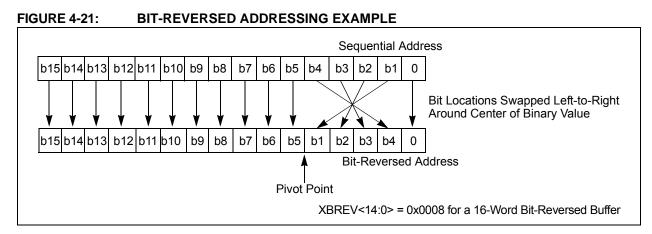
TABLE 4	-12:	PWM RI	EGISTE	R MAP	FOR de	sPIC33E	PXXXN	AC20X/50	DX AND F	PIC24EP	PXXXM	C20X [DEVICE	S ONI	_Y			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	PTEN - PTSIDL SESTAT SEIEN EIPU SYNCPOL SYNCOEN SYNCEN SYNCSRC<2:0> SEVTPS<3:0> 0000															
PTCON2	0C02	_	PCLKDIV<2:0> 000															
PTPER	0C04	PTPER<15:0> 00F8																
SEVTCMP	0C06								SEVTCMP<	5:0>								0000
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	CHPCLKEN CHOPCLK<9:0> 0000																
PWMKEY	0C1E	PWMKEY<15:0> 0000																
Legend: -	Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

	10.						I OIT U					1102-						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	C000
FCLCON1	0C24	_		(CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0>							D<1:0>	0000					
PDC1	0C26				PDC1<15:0>							FFF8						
PHASE1	0C28				PHASE1<15:0>							0000						
DTR1	0C2A	_	_							DTR1<13:	0>							0000
ALTDTR1	0C2C	_	_						А	LTDTR1<1	3:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	—	—						LEB<11	:0>						0000
AUXCON1	0C3E	—	—	BLANKSEL<3:0> CHOPSEL<3:0> CHOPHEN CHOPLE						CHOPLEN	0000							

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN $(C1CTRL1<0>) = 0$ OR 1 FOR dsp										PIC33E	PXXXIV	IC/GP5		ICES O	NLY			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPM	/IODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	—	_	_	_	—	_	—	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	—	—		FILHIT<4:0>			—	ICODE<6:0>					0040			
C1FCTRL	0406	C	DMABS<2:0	>		_	—	—	_	_	_	_			FSA<4:0>			0000
C1FIFO	0408		—			FBP<5:0>			—	_	FNRB<5:0>					0000		
C1INTF	040A		—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—		_	—	—	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>				RERRCNT<7:0>						0000		
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SI	=G2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSł	<<1:0>	F6MSł	<<1:0>	0> F5MSK<1:0> F4MSK<1:0>				F3MSK<1:0> F2MSK<1:0			K<1:0>	<1:0> F1MSK<1:0>			<<1:0>	0000
C1FMSKSEL2	041A	F15MS	F15MSK<1:0> F14MSK<1:0> F13MSK<1:0> F12MSK<1:0>			K<1:0>	F11MSK	F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0			<<1:0>	0000						


TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0>					RI<1:0>	xxxx					
C1RXD	0440							E	CAN1 Rece	eive Data Wo	ord							xxxx
C1TXD	0442							E	CAN1 Trans	smit Data Wo	ord							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS	Bit-Reversed Address							
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	—
bit 7		•		•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL	—	_			_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_			
bit 7							bit (
<u> </u>										
Legend:	- 1-:4			II II.						
R = Readable		W = Writable		-	nented bit, rea					
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own			
bit 15	TON: Timerx	On hit								
	When T32 = 2									
	1 = Starts 32-	bit Timerx/y								
	0 = Stops 32-									
	<u>When T32 = 0</u> 1 = Starts 16-									
	0 = Stops 16-									
bit 14	Unimplemented: Read as '0'									
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit							
		ues module op			dle mode					
		s module opera		ode						
bit 12-7	-	ted: Read as '								
bit 6		erx Gated Time	Accumulation	Enable bit						
	When TCS = This bit is igno									
	When TCS =									
	1 = Gated tim	e accumulatior								
		e accumulation								
bit 5-4		: Timerx Input	Clock Prescal	e Select bits						
	11 = 1:256 10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit							
		nd Timery form nd Timery act as								
bit 2	Unimplemen	ted: Read as ')'							
bit 1	TCS: Timerx	Clock Source S	elect bit							
	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	ne rising edge)						
bit 0	Unimplomon	ted: Read as '	ı'							

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

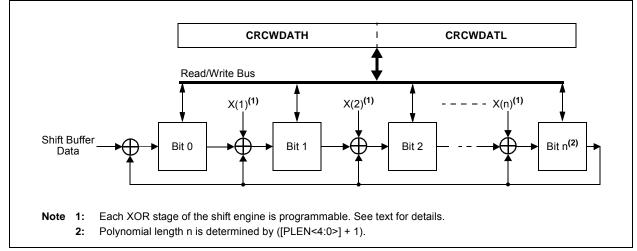
EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be pulled low externally in order to clear and disable the fault ; Writing to FCLCON1 register requires unlock sequence							
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>						
-	d polarity using the IOCON1 register gister requires unlock sequence						
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn			nown				

REGISTER 16-14: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits


When the primary PWMx functions in local time base, this register contains the compare values that can trigger the ADC module.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11010 = Channel 0 positive input is the output of OA3/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	•
	•
	00010 = Channel 0 positive input is $AN2^{(1,3)}$
	00001 = Channel 0 positive input is $AN1^{(1,3)}$
	00000 = Channel 0 positive input is AN0 ^(1,3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

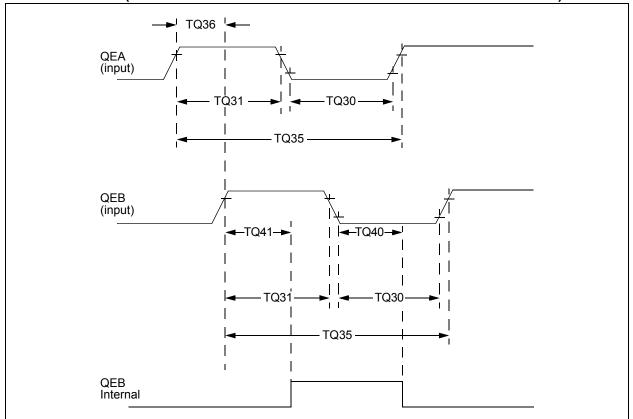
CRC Control	Bit Values					
Bits	16-bit Polynomial	32-bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES


- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

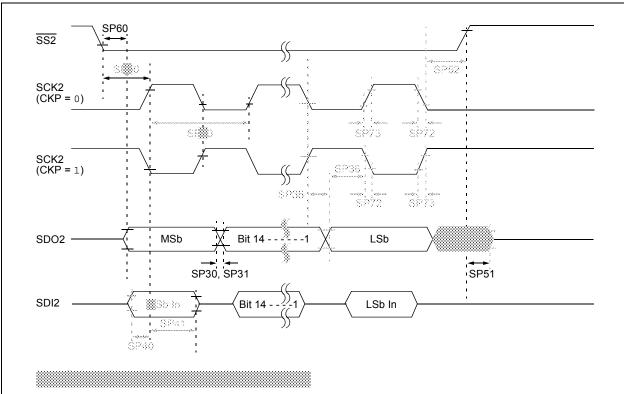
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DWIDTH4 DWIDTH3 DWIDTH2		DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	– – – PLEN4 PLEN3 PLEN2			PLEN2	PLEN1	PLEN0	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	it 12-8 DWIDTH<4:0>: Data Width Select bits						
These bits set the width of the data word (DWIDTH<4:0> + 1).							
bit 7-5	-5 Unimplemented: Read as '0'						

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	ed) -40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Typ. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating te	erwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C \leq TA \leq +150°C				
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions		
ADC Accuracy (12-Bit Mode) ⁽¹⁾								
HAD20a	Nr	Resolution ⁽³⁾	12 Data Bits		bits			
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾		
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz		

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS				otherwi	ise stated	d)	: 3.0V to 3.6V TA ≤ +150°C
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions	
		ADC A	ccuracy	(10-Bit I	Mode) ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits	
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22b	DNL	Differential Nonlinearity	-0.25	-	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
		Dynamic P	erforma	nce (10-	Bit Mode	e) ⁽²⁾	
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

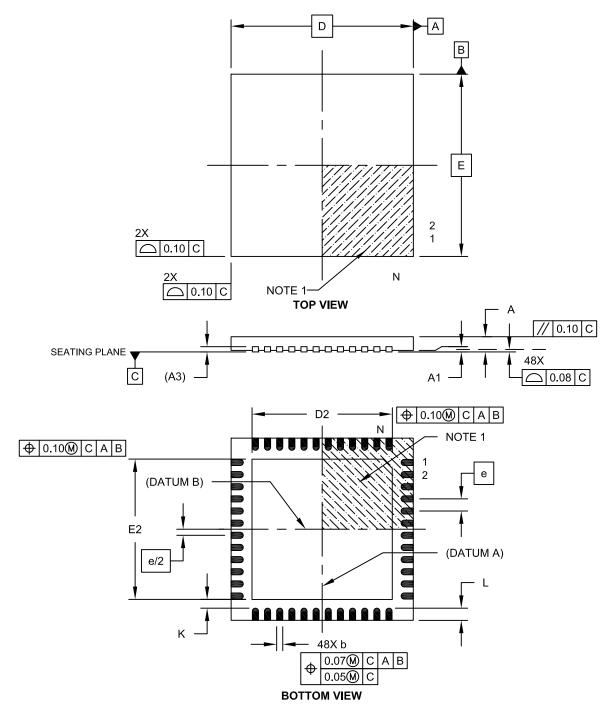
28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example


28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2