

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	45
5.0	Flash Program Memory	119
6.0	Resets	
7.0	Interrupt Controller	127
8.0	Direct Memory Access (DMA)	139
9.0	Oscillator Configuration	
10.0	Power-Saving Features	163
11.0	I/O Ports	173
12.0	Timer1	203
13.0	Timer2/3 and Timer4/5	207
14.0	Input Capture	213
	Output Compare	
	High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit™ (I ² C™)	
	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)	
	Charge Time Measurement Unit (CTMU)	
	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
	Peripheral Trigger Generator (PTG) Module	
25.0	Op Amp/Comparator Module	
	Programmable Cyclic Redundancy Check (CRC) Generator	
27.0		
29.0	Development Support	
	Electrical Characteristics	
	High-Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
	ndix A: Revision History	
	(
	Vicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	527

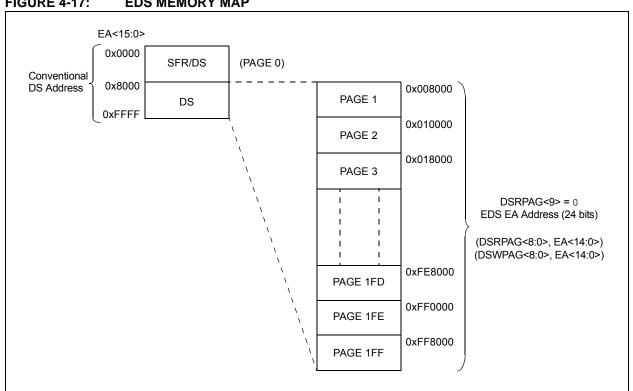
TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0B02	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA0STAL	0B04								STA<15	5:0>								0000
DMA0STAH	0B06	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	—	_	_	_	—	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	_	_							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA1REQ	0B12	FORCE	_	_		_	_	_	_			•	IRQSE	_<7:0>	•			00FF
DMA1STAL	0B14								STA<15	5:0>								0000
DMA1STAH	0B16	_	—	_	_	_	—	—	—				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	_	—	_	_		_	_	_	STB<23:16>					0000			
DMA1PAD	0B1C		PAD<15:0> 0000							0000								
DMA1CNT	0B1E	_	—							CNT<13:0>					0000			
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>		—	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA2STAL	0B24								STA<18	5:0>								0000
DMA2STAH	0B26	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28							STB<15:0> 00						0000				
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	_	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA3STAL	0B34								STA<18	5:0>								0000
DMA3STAH	0B36	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMAPWC	0BF0	—	—	—	—	—	—		_	—	—		—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	—	_	_	_	_	_	_	_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_	_	_	_	_	_	_	_	_	_		LSTCH	1<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>								0000
DSADRH	0BFA	_	—	—	—	—	—	—	—				DSADR•	<23:16>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

4.4.2 EXTENDED X DATA SPACE


The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

FIGURE 4-17: EDS MEMORY MAP

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

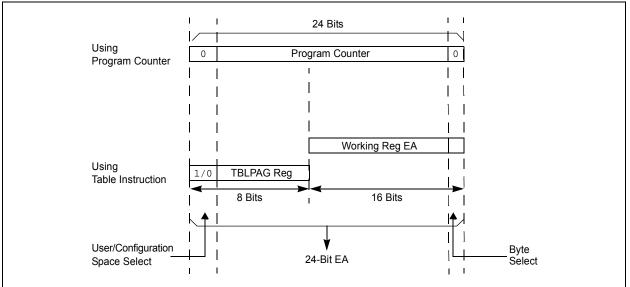
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
GIE	DISI	SWTRAP				_					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	—				INT2EP	INT1EP	INT0EP				
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown				
bit 15	GIE: Global	Interrupt Enable	e bit								
	1 = Interrupt	1 = Interrupts and associated IE bits are enabled									
	0 = Interrupts are disabled, but traps are still enabled										
bit 14	DISI: DISI Instruction Status bit										
	1 = DISI instruction is active 0 = DISI instruction is not active										
bit 13	SWTRAP: Software Trap Status bit										
	1 = Software trap is enabled 0 = Software trap is disabled										
bit 12-3	Unimpleme	nted: Read as '	0'								
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit						
		on negative edg									
bit 1	INT1EP: Ext	ternal Interrupt 1	Edge Detec	t Polarity Selec	t bit						
	1 = Interrupt on negative edge 0 = Interrupt on positive edge										
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit						
	1 = Interrupt on negative edge 0 = Interrupt on positive edge										

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
CHEN	SIZE	DIR	HALF	NULLW								
bit 15							bit					
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0					
bit 7		AWODET	7 WIODE0			MODET	bit					
Lovende												
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'						
		W = Writable		-	mented bit, rea							
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	CHEN: DMA	Channel Enabl	e bit									
	1 = Channel											
bit 14		 0 = Channel is disabled SIZE: DMA Data Transfer Size bit 										
		1 = Byte										
	0 = Word											
bit 13	DIR: DMA Transfer Direction bit (source/destination bus select)											
		om RAM addre om peripheral a		•								
bit 12	 0 = Reads from peripheral address, writes to RAM address HALF: DMA Block Transfer Interrupt Select bit 											
	1 = Initiates i	nterrupt when	half of the data	a has been mo								
bit 11		 0 = Initiates interrupt when all of the data has been moved NULLW: Null Data Peripheral Write Mode Select bit 										
		write to periph			e (DIR bit must	also be clear)						
bit 10-6	Unimplemen	ted: Read as '	0'									
bit 5-4	AMODE<1:0	-: DMA Chann	el Addressing	Mode Select b	oits							
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode								
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1-0	-	DMA Channel		de Select bits								
	11 = One-Sho 10 = Continuo 01 = One-Sho	 11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled 00 = Continuous, Ping-Pong modes are disabled 										

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	—		—	—	—	PLLDIV8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0>	: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)		
	111111111 =	= 513						
	•							
	•							
	•							
	000110000 =	= 50 (default)						
	•							
	000000010 = 000000001 = 000000000 =	= 3						

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP57	R<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP56	R<5:0>				
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8		: Peripheral Ou -3 for periphera		is Assigned to mbers)	RP57 Output F	Pin bits			
bit 7-6	Unimplemen	ted: Read as '	0'						

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

(see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—		RP97R<5:0>								
bit 15							bit 8				

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

bit 5-0

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON		TSIDL	—	_			_					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_					
bit 7							bit (
<u> </u>												
Legend:	- 1-:4			II II.								
R = Readable		W = Writable		-	nented bit, rea							
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own					
bit 15	TON: Timerx	On hit										
	When T32 = 2											
	1 = Starts 32-	1 = Starts 32-bit Timerx/y										
	•	0 = Stops 32-bit Timerx/y										
		<u>When T32 = 0:</u> 1 = Starts 16-bit Timerx										
	0 = Stops 16-											
bit 14	Unimplemen	Unimplemented: Read as '0'										
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit									
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 											
		-		ode								
bit 12-7	Unimplemented: Read as '0'											
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit											
	<u>When TCS = 1:</u> This bit is ignored.											
	When TCS = 0 :											
	1 = Gated time accumulation is enabled											
		0 = Gated time accumulation is disabled										
bit 5-4		: Timerx Input	Clock Prescal	e Select bits								
	11 = 1:256 10 = 1:64	11 = 1:256										
	01 = 1:8											
	00 = 1:1											
bit 3	T32: 32-Bit Ti	T32: 32-Bit Timer Mode Select bit										
		nd Timery form nd Timery act as										
bit 2	Unimplemen	ted: Read as ')'									
bit 1	TCS: Timerx	Clock Source S	elect bit									
	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	ne rising edge)								
bit 0	Unimplomon	ted: Read as '	ı'									

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTTM	IR<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTT	/IR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u				x = Bit is unkr	nown			

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

20.1 UART Helpful Tips

- 1. In multi-node, direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

- "UART" (DS70582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BI	P<3:0>			F2BI	P<3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BI	P<3:0>			F0BI	P<3:0>			
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-12	1111 = Filte 1110 = Filte • • • • •	: RX Buffer Mas er hits received in er hits received in er hits received in er hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	iffer					
bit 11-8	F2BP<3:0>	: RX Buffer Mas	k for Filter 2 b	oits (same value	s as bits<15:1	2>)			
bit 7-4	F1BP<3:0>	: RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)			
	0 F0BP<3:0>: RX Buffer Mask for Filter 0								

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0											
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7				1			bit				
Legend:											
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown				
bit 15	HLMS: High	or Low-Level N	lasking Select	bits							
	•		•		erted ('0') compa	rator signal from	n propagatin				
					erted ('1') compa						
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	OCEN: OR G	ate C Input Er	able bit								
	1 = MCI is co	nnected to OR	gate								
	0 = MCI is no	t connected to	OR gate								
bit 12	OCNEN: OR Gate C Input Inverted Enable bit										
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 										
				jate							
bit 11	OBEN: OR Gate B Input Enable bit 1 = MBI is connected to OR gate										
		nnected to OR t connected to	•								
bit 10			•	a hit							
	OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate										
		MBI is not conr	•	ate							
bit 9		ate A Input En	-								
	1 = MAI is connected to OR gate										
	0 = MAI is no	t connected to	OR gate								
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit							
	1 = Inverted MAI is connected to OR gate										
	0 = Inverted MAI is not connected to OR gate										
bit 7	NAGS: AND Gate Output Inverted Enable bit 1 = Inverted ANDI is connected to OR gate										
	 0 = Inverted ANDI is not connected to OR gate PAGS: AND Gate Output Enable bit 										
bit 6	1 = ANDI is connected to OR gate										
bit 6		•									
bit 6	1 = ANDI is c	•	R gate								
bit 6 bit 5	1 = ANDI is c 0 = ANDI is n ACEN: AND	onnected to O ot connected t Gate C Input E	R gate o OR gate inable bit								
	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co	onnected to O ot connected t Gate C Input E nnected to AN	R gate o OR gate inable bit D gate								
bit 5	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co 0 = MCI is no	onnected to O lot connected t Gate C Input E nnected to AN it connected to	R gate o OR gate inable bit D gate AND gate								
	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co 0 = MCI is no ACNEN: AND	onnected to O lot connected t Gate C Input E nnected to AN	R gate o OR gate inable bit D gate AND gate Inverted Enab								

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0			
	CVR2OE ⁽¹⁾	_	_	_	VREFSEL	_	_			
bit 15							bit			
D 444 0	DAALO	DAALO		D 444 0	DAALO	DANA	D 444 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVR10E ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	Unimplement									
bit 14		•	ige Reference	•	ble bit ⁽¹⁾					
			nected to the C onnected from		nin					
bit 13-11	Unimplement				F					
bit 10	-		age Reference	e Select bit						
	1 = CVREFIN = VREF+									
	0 = CVREFIN is	s generated by	y the resistor ne	etwork						
bit 9-8	Unimplement	ted: Read as '	0'							
bit 7			e Reference E							
			erence circuit is erence circuit is		wn					
bit 6	CVR1OE: Co	mparator Volta	ige Reference	1 Output Ena	ble bit ⁽¹⁾					
			n the CVREF1C		n					
bit 5	CVRR: Comparator Voltage Reference Range Selection bit									
	1 = CVRSRC/2 0 = CVRSRC/3									
bit 4	CVRSS: Comparator Voltage Reference Source Selection bit ⁽²⁾									
		0	erence source, erence source,	· ·	ref+) – (AVss) /dd – AVss					
bit 3-0	CVR<3:0> Co	mparator Volt	age Reference	Value Select	ion $0 \leq CVR < 3$:	$0> \le 15$ bits				
	When CVRR = CVREFIN = (CV		(CVRSRC)							
	When CVRR = CVREFIN = (CV	= 0:		(\mathbf{C})						

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- 2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

REGISTER 27-1: DEVID: DEVICE ID REGISTER

	R = Read-Only bit			U = Unimplem			
bit 7							bit 0
			DEVID	<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVID<	:15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVID<2	23:16>(1)			
R	R	R	R	R	R	R	R

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8>(1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend: R =	Read-only bit			U = Unimplem	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode) ⁽¹⁾		
HAD20a	Nr	Resolution ⁽³⁾	12 Data Bits			bits	
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
Dynamic Performance (12-Bit Mode) ⁽²⁾							
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHAF	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	ADC Accuracy (10-Bit Mode) ⁽¹⁾							
HAD20b	Nr	Resolution ⁽³⁾	10 Data Bits			bits		
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	Dynamic Performance (10-Bit Mode) ⁽²⁾							
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz		

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 1310017

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	