

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp204-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)										
Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description						
U2CTS	Ι	ST	No	UART2 Clear-To-Send.						
U2RTS	0	—	No	UART2 Ready-To-Send.						
U2RX	Ι	ST	Yes	UART2 receive.						
U2TX	0	—	Yes	UART2 transmit.						
BCLK2	0	ST	No	UART2 IrDA [®] baud clock output.						
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.						
SDI1	I	ST	No	SPI1 data in.						
SDO1	0	—	No	SPI1 data out.						
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.						
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.						
SDI2	I	ST	Yes	SPI2 data in.						
SDO2	0	_	Yes	SPI2 data out.						
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.						
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.						
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.						
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.						
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.						
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.						
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.						
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.						
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.						
TMS ⁽⁵⁾	Ι	ST	No	JTAG Test mode select pin.						
TCK	Ι	ST	No	JTAG test clock input pin.						
TDI	I	ST	No	JTAG test data input pin.						
TDO	0	_	No	JTAG test data output pin.						
C1RX ⁽²⁾	Ι	ST	Yes	ECAN1 bus receive pin.						
C1TX ⁽²⁾	0	_	Yes	ECAN1 bus transmit pin.						
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	Ι	ST	Yes	PWM Fault Inputs 1 and 2.						
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾	Ι	ST	No	PWM Fault Inputs 3 and 4.						
FLT32 ^(1,3)	Ι	ST	No	PWM Fault Input 32 (Class B Fault).						
DTCMP1-DTCMP3 ⁽¹⁾	Ι	ST	Yes	PWM Dead-Time Compensation Inputs 1 through 3.						
PWM1L-PWM3L ⁽¹⁾	0	—	No	PWM Low Outputs 1 through 3.						
PWM1H-PWM3H ⁽¹⁾	0	—	No	PWM High Outputs 1 through 3.						
SYNCI1 ⁽¹⁾	Ι	ST		PWM Synchronization Input 1.						
SYNCO1 ⁽¹⁾	0		Yes	PWM Synchronization Output 1.						
INDX1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Index1 pulse input.						
HOME1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Home1 pulse input.						
QEA1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer						
QEB1 ⁽¹⁾	,	ст	Vee	external clock/gate input in Timer mode.						
	Ι	ST	Yes	Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer						
CNTCMP1 ⁽¹⁾	0		Yes	external clock/gate input in Timer mode. Quadrature Encoder Compare Output 1.						
	0		162							

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_				_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_		QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF					_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_					_	_	_	_	_	_	_	_		0000
IFS6	080C	_	_	_					_	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_					_	_	_	_	_	_	_	_		0000
IFS9	0812	_	—	_	_	_			_	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_		_	_	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_			_	_	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC6	082C	_	_	_	_	_		_	_	_	_	_	_	_	_	_	PWM3IE	0000
IEC7	082E	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_		_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0	>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0	>	_		IC2IP<2:0>		_	[DMA0IP<2:0>		4444
IPC2	0844	_	l	J1RXIP<2:0	>	_		SPI1IP<2:0)>	_		SPI1EIP<2:0	>			T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	C	MA1IP<2:	0>	_		AD1IP<2:0>				U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>		5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_		_	_	_	_	_	_			INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0	>	_		OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_	1	U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0>				T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>		_	C	2: 2: 2:	0>	_		SPI2IP<2:0>			5	SPI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_	IC3IP<2:0>			[DMA3IP<2:0>		0444	
IPC12	0858	_	_	_	_	_	N	112C2IP<2:	0>	_	SI2C2IP<2:0>		_	_	_	_	0440	
IPC14	085C	_	_	_	_	_	(QEI1IP<2:()>	_	PSEMIP<2:0>		_	_	_	_	0440	
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0		_	U1EIP<2:0>		_	<u> </u>	_	_	4440	
IPC17	0862	_	_	_	_	_		C1TXIP<2:		_	_	_	—	_	_	_	_	0400
IPC19	0866	_	_		_	_						L CTMUIP<2:0	>		<u> </u>	_	_	0040

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

DS70000657H-page 73

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL		V	WORD<4:0)>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	0000
CRCCON2	0642		_	_		D	WIDTH<4:0)>		_	-	_		F	PLEN<4:0>			0000
CRCXORL	0644		X<15:1>0								0000							
CRCXORH	0646								X·	<31:16>								0000
CRCDATL	0648								CRC Data	Input Low V	Vord							0000
CRCDATH	064A								CRC Data	Input High \	Vord							0000
CRCWDATL	064C		CRC Result Low Word								0000							
CRCWDATH	064E		CRC Result High Word 00									0000						

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—			RP35F	<5:0>			_	_			RP20F	₹<5:0>			0000
RPOR1	0682	_	_		RP37R<5:0>					_	Ι	RP36R<5:0>						0000
RPOR2	0684	_	_			RP39F	<5:0>			_	Ι	RP38R<5:0>					0000	
RPOR3	0686	_	_		RP41R<5:0>					_	Ι	RP40R<5:0>					0000	
RPOR4	0688	_	_			RP43F	<5:0>			—	_	– RP42R<5:0>					0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680		—			RP35F	R<5:0>			_	_			RP20F	२<5:0>			0000
RPOR1	0682	_	_			RP37F	۲<5:0>			_	_			RP36F	२<5:0>			0000
RPOR2	0684	_	_			RP39F	२<5:0>			_	—			RP38F	R<5:0>			0000
RPOR3	0686	_	_			RP41F	२<5:0>			_	—			RP40F	R<5:0>			0000
RPOR4	0688	_	_			RP43F	۲<5:0>			_	_			RP42F	२<5:0>			0000
RPOR5	068A	_	_	_	_	_	_		_	_	_	_	_	_	—			0000
RPOR6	068C	_	—	—	_	_	_	_	—	_	_			RP56F	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR	—	_	VREGSF	—	CM	VREGS
bit 15							bit 8
		DANIO	DAA/ O	DAMA	DAMO		
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
							bit (
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15	•	Reset Flag bit					
		onflict Reset ha onflict Reset ha		d			
bit 14	•	gal Opcode or			et Flag bit		
		I opcode detec			•	lized W registe	er used as ar
		Pointer caused					
	-	l opcode or Uni		egister Reset h	as not occurred	d	
bit 13-12	-	ted: Read as '			. 1.9		
bit 11		ash Voltage Reg Itage regulator i			p bit		
		ltage regulator (•	ing Sleep		
bit 10		ted: Read as '	-	,,	5		
bit 9	CM: Configur	ation Mismatch	Flag bit				
	1 = A Configu	uration Mismatc uration Mismatc	h Reset has				
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	•	egulator is active egulator goes in	•	•	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res Clear (pin) Res					
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
		instruction has instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is di						
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co SWDTEN bit settir	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER 7-5:	INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	_	—	—	—	—	_	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	—	DAE	DOOVR	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as	'0'					
bit 5	DAE: DMA A	ddress Error S	Soft Trap Status	s bit				
	1 = DMA add	ress error soft	trap has occur	red				
	0 = DMA add	ress error soft	trap has not o	ccurred				
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit				
	1 = DO stack	overflow soft t	rap has occurre	ed				

I = D0	Stack Overnow	3011 11 ap 11 a3	occurred
0 = DO	stack overflow	soft trap has	not occurred

bit 3-0	Unimplemented: Read as '0'
---------	----------------------------

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—		—	—	—	SGHT
bit 7					•		bit 0
Legend:							

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)	
INT0 – External Interrupt 0	00000000	_	_	
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—	
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—	
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—	
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—	
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)	
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)	
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)	
OC4 – Output Compare 4	00011010	—	0x0924 (OC4R) 0x0922 (OC4RS)	
TMR2 – Timer2	00000111	_	_	
TMR3 – Timer3	00001000	—	_	
TMR4 – Timer4	00011011	—	_	
TMR5 – Timer5	00011100	—	—	
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—	
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)	
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)		
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)	
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	_	
ECAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)	
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpler	mented bit, read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

		PP20P<5:0>					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
				RP35	iR<5:0>		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP37R<5:0>					
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP36R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15BP<3:0>				F14BI	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F13BP<3:0>						P<3:0>	1010 0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown
bit 15-12	1111 = Filte 1110 = Filte	RX Buffer Ma r hits received in r hits received in r hits received in r hits received in r hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	differ 4			
bit 11-8	F14BP<3:0;	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)	
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	3 bits (same val	ues as bits<15	:12>)	
bit 3-0	F12BP<3:0:	RX Buffer Ma	sk for Filter 1	2 bits (same val	ues as bits<15	:12>)	

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

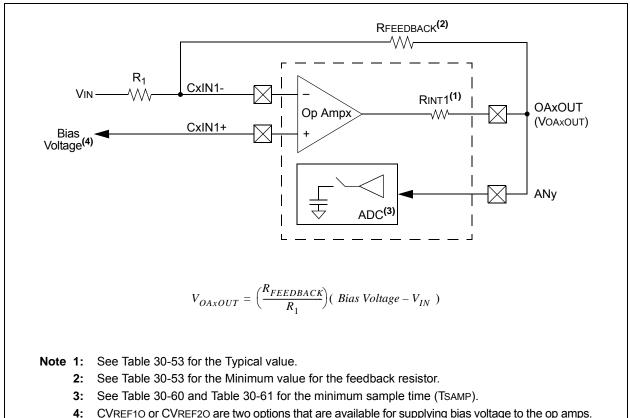
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit			
	1 = Generate	es Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed	
bit 14		mple Trigger P					
		es Trigger wher				al	
bit 13					mand is execute	a	
DIE 13		mple Trigger P es Trigger wher			evecuted		
					mand is execute	ed	
bit 12		mple Trigger P					
	1 = Generate	es Trigger wher	the broadcas	t command is	executed		
					mand is execute	ed	
bit 11	-	ger/Synchroniz					
					ast command is broadcast con		ited
bit 10	IC3TSS: Trig	ger/Synchroniz	ation Source f	for IC3 bit			
					ast command is broadcast con		ited
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source f	for IC2 bit			
					ast command is broadcast con		ited
bit 8		ger/Synchroniz					
					ast command is broadcast con		ited
bit 7		ck Source for C	-				
		es clock pulse v generate clock			d is executed command is exe	cuted	
bit 6		ck Source for C	-				
		es clock pulse v aenerate clock			d is executed command is exe	cuted	
bit 5		ck Source for C	-				
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted	
	This register is rea PTGSTRT = 1).	-					and
	This register is on	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L	
		.,			c.op commune	•	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

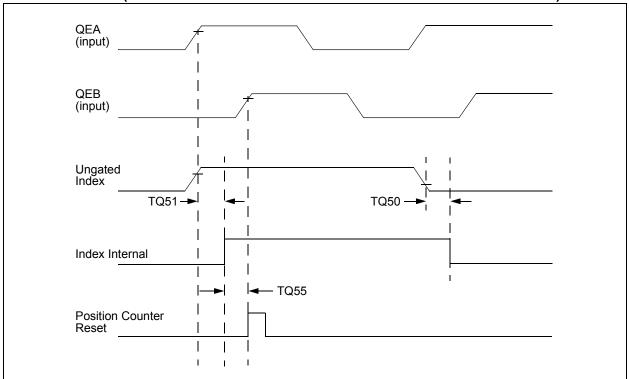
Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

REGISTER	25-3: CM40	CON: COMPA	RATOR 4 CO	ONTROL RE	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	—	—	_	CEVT	COUT
bit 15							bit 8
R/W-0	DAM 0	U-0		U-0	U-0		R/W-0
	R/W-0	0-0	R/W-0	0-0	0-0	R/W-0	
EVPOL1	EVPOL0	—	CREF	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	iown
			•				
bit 15	CON: Comp	arator Enable b	bit				
		ator is enabled					
		ator is disabled					
bit 14	COE: Comp	arator Output E	nable bit				
		ator output is pr ator output is in		xOUT pin			
bit 13	CPOL: Com	parator Output	Polarity Select	bit			
		ator output is in					
	0 = Compara	ator output is no	ot inverted				
bit 12-10	Unimpleme	nted: Read as	'0'				
bit 9	CEVT: Com	parator Event b	it				
	interrup	ts until the bit is	cleared	POL<1:0> set	tings occurred;	disables future	triggers and
	•	ator event did i					
bit 8		parator Output					
	$\frac{\text{VVnen CPOL}}{1 = \text{VIN} + > \text{V}}$	<u>. = 0 (non-inver</u> /N-	ted polarity):				
	0 = VIN + < V						
	When CPOL	= 1 (inverted p	olarity):				
	1 = VIN+ < V						
	0 = VIN + > V	'IN-					
bit 7-6		>: Trigger/Ever		-			
	10 = Trigger		generated only			or output (while (ne polarity selected	
		L = 1 (inverted) -high transition		ator output.			
		L = 0 (non-inve -low transition		ator output.			
		/event/interrupt (while CEVT =		v on low-to-higl	n transition of th	e polarity selecte	ed comparato
		L = 1 (inverted		ator output.			
		L = 0 (non-inve -high transition		ator output.			
	00 = Trigger	/event/interrupt	generation is	disabled			
Note 1: In	puts that are se	lected and not a	available will be	e tied to Vss. S	See the "Pin Dia	agrams" sectior	n for available


Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW			Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm , Wn ⁽¹⁾	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr ⁽¹⁾	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Op (unless othe Operating te	erwise st	ated) e -40°(ns: 3.0V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Max. Units Conditions			Conditions
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHA	RACTERIS	Standard Op (unless othe Operating ter	erwise st	ated) re -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

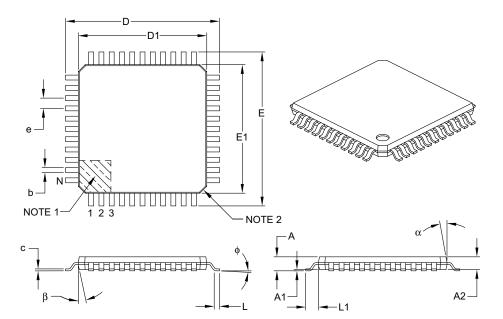
2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_		0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A	Vон1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	_	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	_	—		$IOH \ge -3.7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ (Note 1)
			3.0		—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5		_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)
			2.0	_	—		$IOH \ge -6.8 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$ (Note 1)
			3.0	_	—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS


Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimens	MIN	NOM	MAX		
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09 – 0.20			
Lead Width	b	0.30 0.37 0.45			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
E	imension Limits	MIN	NOM	MAX	
Number of Leads	N		64		
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09 – 0.20			
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11° 12° 13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).