

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp204t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

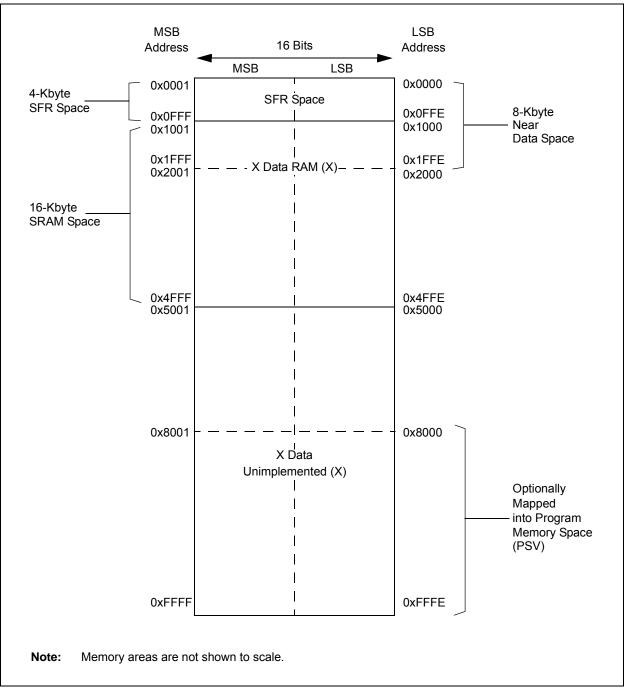

	â	(se			Rei	nappa	ble Pe	eriphe	rals										
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbyte)	16-Bit/32-Bit Timers	Input Capture	Output Compare	UART	SPI ⁽²⁾	ECAN TM Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	РТС	I/O Pins	Pins	Packages
PIC24EP32GP202	512	32	4																
PIC24EP64GP202	1024	64	8																SPDIP,
PIC24EP128GP202	1024	128	16	5	4	4	2	2	—	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ ,
PIC24EP256GP202	1024	256	32	2															QFN-S
PIC24EP512GP202	1024	512	48																
PIC24EP32GP203	512	32	4	5	4	4	2	2		3	2	1	8	3/4	Vaa	Vaa	25	36	VTLA
PIC24EP64GP203	1024	64	8	5	4	4	2	2	_	3	2		0	3/4	Yes	Yes	25	30	VILA
PIC24EP32GP204	512	32	4																
PIC24EP64GP204	1024	64	8																VTLA ⁽⁴⁾ ,
PIC24EP128GP204	1024	128	16	16 5 32	4	4	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
PIC24EP256GP204	1024	256	32																UQFN
PIC24EP512GP204	1024	512	48																
PIC24EP64GP206	1024	64	8																
PIC24EP128GP206	1024	128	16	_							-			~ ~ ~				~ /	TQFP.
PIC24EP256GP206	1024	256	32	5	4	4	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN
PIC24EP512GP206	1024	512	48																
dsPIC33EP32GP502	512	32	4																
dsPIC33EP64GP502	1024	64	8																SPDIP,
dsPIC33EP128GP502	1024	128	16	5	4	4	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ .
dsPIC33EP256GP502	1024	256	32																QFN-S
dsPIC33EP512GP502	1024	512	48																
dsPIC33EP32GP503	512	32	4	_	_	_	_	_		_	_		_						
dsPIC33EP64GP503	1024	64	8	5	4	4	2	2	1	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP32GP504	512	32	4											İ					
dsPIC33EP64GP504	1024	64	8																VTLA ⁽⁴⁾ ,
dsPIC33EP128GP504	1024	128	16	5	4	4	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
dsPIC33EP256GP504	1024	256	32															40	UQFN, UQFN
dsPIC33EP512GP504	1024	512	48																
dsPIC33EP64GP506	1024	64	8											1					
dsPIC33EP128GP506	1024	128	16																TQFP,
dsPIC33EP256GP506	1024	256	32	5	4	4	2	2	1	3	2	1	16	3/4	Yes	Yes	53	64	QFN
dsPIC33EP512GP506	1024	512	48																
		1				1	1	1			1	1	1						

TABLE 1: dsPIC33EPXXXGP50X and PIC24EPXXXGP20X GENERAL PURPOSE FAMILIES

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details.

Only SPI2 is remappable.
 INT0 is not remappable.

4: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

IABLE 4-2	23: E	CAN1 I	REGIST	ER MA	P WHE	N WIN	(CICIE	<l1<0></l1<0>	•) = 1 FC	OR dsPIC	33EPX	XXMC/G	P50X D	EVICES	ONLY (NUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E	046E EID<15:8>										EID<	7:0>				xxxx	
C1RXF12SID	0470	SID<10:3>						SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx				
C1RXF12EID	0472	EID<15:8>						EID<7:0>							xxxx			
C1RXF13SID	0474		SID<10:3>							SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx	
C1RXF13EID	0476				EID<	:15:8>				EID<7:0>						xxxx		
C1RXF14SID	0478				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C1RXF14EID	047A	EID<15:8>						EID<7:0>						xxxx				
C1RXF15SID	047C	SID<10:3>							SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx		
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) TARIE 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
Legend:									
bit 7							bit C		
			NVMAD)R<23:16>					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
bit 15							bit 8		
_	—	—	—	—	_	—	—		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			NVMA	DR<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			NVMA	DR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
			NVMK	EY<7:0>						
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk					

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
-	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1		
_	_	LSTCH<3:0>							
bit 7									
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-4	Unimplemen	ted: Read as '	0'						
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits					
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sir	nce system Res	set				
	•								
	•								
	•								
		rved data transfer wa data transfer wa							
	0001 = Last data transfer was handled by Channel 1								

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0001 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	-	—	—		LEB	<11:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			LEE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown	

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB
bit 15	·	·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7				TIOME	INDEX	QLD	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	QCAPEN: Q	EI Position Cou	nter Input Cap	ture Enable bit			
		tch event trigge					
		tch event does		-			
bit 14		Ax/QEBx/INDX	•	tal Filter Enable	e dit		
		digital filter is e digital filter is d		sed)			
bit 13-11		: QEAx/QEBx/II			Iter Clock Divid	le Select bits	
	111 = 1:128			g			
	110 = 1:64 cl	lock divide					
	101 = 1:32 cl						
	100 = 1:16 cl						
	011 = 1:8 clo 010 = 1:4 clo						
	001 = 1:4 Clo						
	000 = 1:1 clo						
bit 10-9	OUTFNC<1:	0>: QEI Module	Output Functi	on Mode Selec	ct bits		
		NCMPx pin goe	-			GEC	
		NCMPx pin goe					
		NCMPx pin goe	s high when P	$OS1CNT \ge QE$	IIGEC		
L:1 0	00 = Output i						
bit 8		ap QEA and QE	•				
		d QEBx are sw d QEBx are not		quadrature dec	coder logic		
bit 7	HOMPOL: H	OMEx Input Po	larity Select bit				
	1 = Input is in						
bit 6	0 = Input is n		ty Soloot bit				
	1 = Input is in	OXx Input Polari	ly Select bit				
	0 = Input is n						
bit 5	-	EBx Input Polar	itv Select bit				
	1 = Input is i	•	.,				
	0 = Input is r						
bit 4	QEAPOL: Q	EAx Input Polar	ity Select bit				
	1 = Input is i						
	0 = Input is r	not inverted					
bit 3	HOME: Statu						
DIL 3	HOME . Statu		out Pin Alter Po	olarity Control			
DIL 3	1 = Pin is at 0 = Pin is at	logic '1'	out Pin Aiter Po	bianty Control			

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽¹) _	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0				
bit 15							bit 8				
					5444.0						
R/W-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL				
bit 7							bit				
Legend:		HC = Hardwar	e Clearable b	it							
R = Readal	ole bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all UA s disabled; all UA	ARTx pins are								
bit 14	Unimplemen	ted: Read as '0	,								
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit								
		nues module ope es module opera			le mode						
bit 12		Encoder and De									
		 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled 									
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t							
		oin is in Simplex oin is in Flow Co									
bit 10	Unimplemen	ted: Read as '0	,								
bit 9-8	UEN<1:0>: U	JARTx Pin Enab	le bits								
		JxRX and BCLK				controlled by PC	ORT latches ⁽³				
		JxRX, UxCTS ar JxRX and UxRT				ontrolled by DC	DT latabaa(4				
		nd UxRX pins a									
bit 7		e-up on Start bit	Detect During	Sleep Mode Er	nable bit						
	1 = UARTx o in hardwa	continues to sam are on the follow -up is enabled	ple the UxRX	pin; interrupt is		he falling edge	; bit is cleare				
bit 6	LPBACK: UA	ARTx Loopback	Mode Select I	oit							
		Loopback mode k mode is disabl									
	Refer to the " UAI enabling the UAR				Family Referen	<i>ce Manual"</i> for i	nformation or				
	This feature is or			-	0)						
		•			· .						
		nis feature is only available on 44-pin and 64-pin devices.									

4: This feature is only available on 64-pin devices.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0			
bit 15	I						bit 8			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0			
bit 7							bit			
Logondi										
Legend: R = Readable	- hit	W = Writable	hit	LI – Unimplor	mented bit, rea	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr				
	FUR				aleu	x – Dit is uliki				
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12-8	=	Filter Hit Num								
		1 = Reserved								
	01111 = Filte	er 15								
	•									
	•									
	• 00001 = Filter 1									
	00001 = Filte									
bit 7		ted: Read as '	0'							
bit 6-0	-									
	ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved									
		IFO almost full								
		leceiver overflo								
	1000010 = K 1000001 = E	Vake-up interru rror interrupt	μ							
	1000000 = N									
	•									
	•									
	•									
		11111 = Rese								
	•	B15 buffer inte	inupt							
	•									
	•									
	0001001 = R	B9 buffer inter	rupt							
		B8 buffer inter								
		RB7 buffer inte RB6 buffer inte								
		RB5 buffer inte								
		RB4 buffer inte								
	0000011 = T	RB3 buffer inte	errupt							
		RB2 buffer inte RB1 buffer inte								

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

NOTES:

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

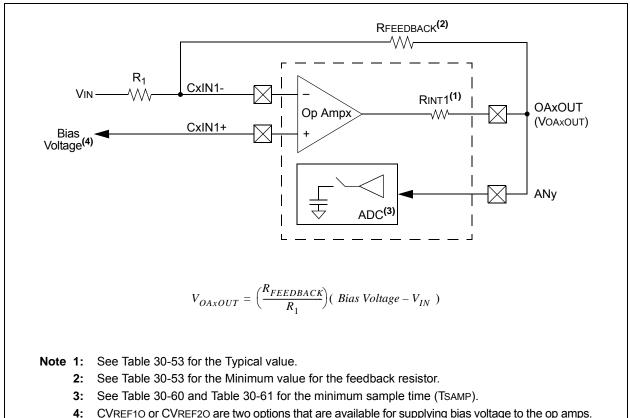
23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

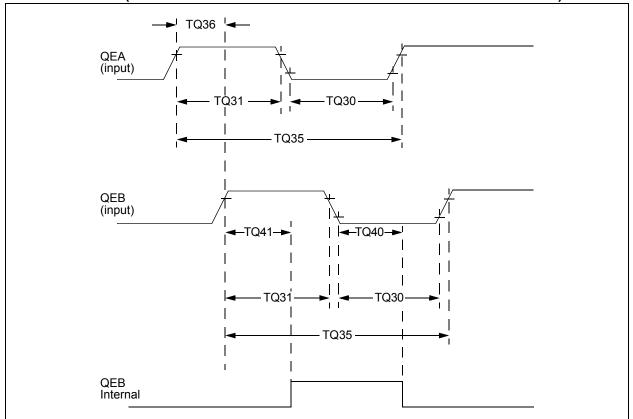

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools


FIGURE 25-7: OP AMP CONFIGURATION B

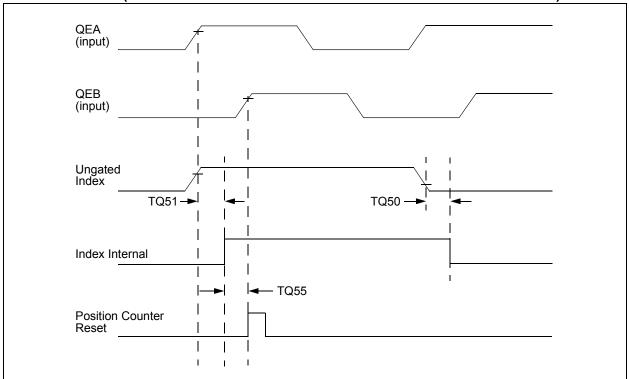
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	_{ACC} (1)	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	£	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions	
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	_	-	-	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	-	-	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	-	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

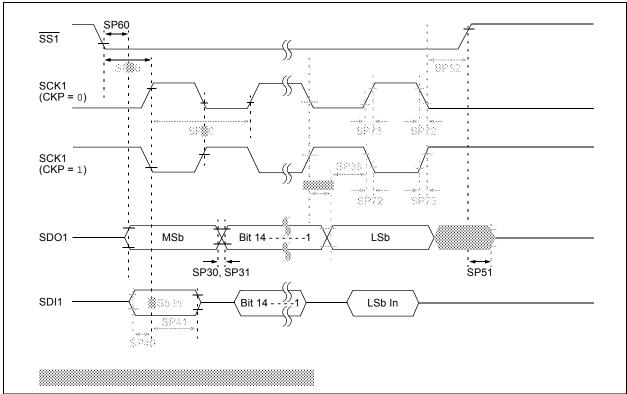


FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	 Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	 Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)