

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64gp206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0			
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC			
bit 15							bit 8			
R/W-0 ⁽²	R/W-0 ^(2,3)	³⁾ R/W-0 ^(2,3) R/W-0 ^(2,3) R-0 R/W-0 R/W-0 R/W-0 R								
IPL2	IPL1	IPL1 IPL0 RA N OV Z O								
bit 7	bit 7 bit 0									
Legend:		C = Clearable	bit							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾							
	1 = Accumula	ator A has over	flowed							
	0 = Accumula	ator A has not c	verflowed							
bit 14	OB: Accumu	lator B Overflov	v Status bit ⁽¹⁾							
	1 = Accumula	ator B has over	flowed							
hit 13		lator A Saturatio	n 'Sticky' Sta	tue hit(1,4)						
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time					
	0 = Accumula	ator A is not sat	urated		Some time					
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)						
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time					
	0 = Accumula	ator B is not sat	urated							
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾					
	1 = Accumula	ators A or B have	ve overflowed							
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)					
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1				
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time				
hit 9		Active hit(1)		alou						
bit 0	1 = DO loop is	s in progress								
	0 = DO loop is	s not in progres	S							
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit							
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)			
	of the re	sult occurred								
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized			
	uala) U									
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.			
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority			
	Level. The value in parentheses indicates the IPL, if IPL< $3 > = 1$. User interrupts are disabled when IPL< $3 > = 1$.									

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN		PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2	:0>		F	PTGDIV<4:0	>		PTGPWD<3:0> — PTGWDT<2:0>					0>	0000		
PTGBTE	0AC4		ADC	CTS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOLD	D<15:0>						0000		
PTGT0LIM	0AC8								PTGT0LIN	1<15:0>								0000
PTGT1LIM	0ACA								PTGT1LIN	1<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	1<15:0>								0000
PTGC0LIM	0ACE		PTGC0LIM<15:0>								0000							
PTGC1LIM	0AD0								PTGC1LIN	1<15:0>								0000
PTGADJ	0AD2								PTGADJ•	<15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	_	_	_	_	_	_	_	_	_	_	_		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	21<7:0>				STEP0<7:0>						0000		
PTGQUE1	0ADA				STEP	93<7:0>				STEP2<7:0>						0000		
PTGQUE2	0ADC				STEP	95<7:0>				STEP4<7:0>						0000		
PTGQUE3	0ADE				STEP	7<7:0>				STEP6<7:0>						0000		
PTGQUE4	0AE0				STEP	9<7:0>				STEP8<7:0>						0000		
PTGQUE5	0AE2		STEP11<7:0>						STEP10<7:0>						0000			
PTGQUE6	0AE4				STEP	13<7:0>				STEP12<7:0>						0000		
PTGQUE7	0AE6		STEP15<7:0>						STEP14<7:0>						0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$

M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

DS70000657H-page 154

© 2011-2013 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Sync Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3(3)	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of seven available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual" for OCxR and OCxRS register restrictions.

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB		
bit 15							bit 8		
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0		
bit 7							bit 0		
Legend:		HSC = Hardw	are Settable/Cl	earable bit					
R = Reada	ible bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '0)'						
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit					
	1 = Output C	compare x Halts	in CPU Idle me	ode via CDU Idia m	odo				
bit 12 10			nues lo operale		oue				
DIL 12-10	111 = Perinh	eral clock (Ep)	pare x Clock S						
	110 = Reserv	/ed							
	101 = PTGO	x clock ⁽²⁾							
	100 = T1CLK	is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)			
	011 = 15CLK	is the clock sou	urce of the OC	Х У					
	010 = T4CLK 001 = T3CLK	is the clock so	urce of the OC	x X					
	000 = T2CLK	is the clock so	urce of the OC	ĸ					
bit 9	Unimplemen	ted: Read as '0)'						
bit 8	ENFLTB: Fau	ult B Input Enab	le bit						
	1 = Output C 0 = Output C	ompare Fault B compare Fault B	input (OCFB) input (OCFB)	is enabled is disabled					
bit 7	ENFLTA: Fau	ult A Input Enabl	le bit						
	1 = Output C	ompare Fault A	input (OCFA)	is enabled					
	0 = Output C	ompare Fault A	input (OCFA)	is disabled					
bit 6	Unimplemen	ted: Read as '0)'						
bit 5	OCFLTB: PW	M Fault B Cond	dition Status bit						
	1 = PWM Fa 0 = No PWM	ult B condition of Fault B condition	on OCFB pin ha on on OCFB pi	as occurred n has occurred					
bit 4	OCFLTA: PW	/M Fault A Cond	dition Status bit						
	1 = PWM Fault A condition on OCFA pin has occurred								
	0 = No PWM	I Fault A condition	on on OCFA pi	n has occurred					
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	A mode only.					
2:	Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger								
	Generator (PTG PTGO4 = OC1) wodule" for r	nore informatio	n.					
	PTGO5 = OC2								
	PTGO6 = OC3								
	PTG07 = 0C4								

REGISTER 16-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER
--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	_	—	—	—		
bit 15 bit 8									
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	_	—	—	—	PCLKDIV2 ⁽¹⁾	PCLKDIV1 ⁽¹⁾	PCLKDIV0(1)		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
hit 15.2 Unimplemented: Read as (a)									

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved 110 = Divide-by-64 101 = Divide-by-32
- 100 = Divide-by-32100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
		II DI CMPX = 1, PWWXH IS SNOTENED and PWWXL IS lengthened.
		When Set to 0.2. If DTCMPx = 0. PW/MxH is shortened and PW/MxL is lengthened
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source
		for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

NOTES:

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBP<5:0>: F	IFO Buffer Poir	nter bits				
	011111 = RE	331 buffer					
	•	50 builer					
	•						
	•						
	000001 = TR	B1 buffer					
	000000 = TR	RB0 buffer					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	ter bits			
	011111 = RE	331 buffer					
	011110 = RE	330 buffer					
	•						
	•						
	•						
	000001 = TR	(B1 buffer					
	$000000 = \mathbf{IR}$						

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit				
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed 				
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit				
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed 				
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit				
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed 				
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit				
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed 				
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit				
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed 				

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 2	5-3: CM4C	ON: COMPA	RATOR 4 CO	ONTROL RE	GISTER				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
CON	COE	CPOL	_			CEVT	COUT		
bit 15							bit 8		
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
EVPOL1	EVPOL0		CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾		
bit 7	•		1			-	bit 0		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15	CON: Compa	rator Enable bi	t						
	1 = Comparat	tor is enabled							
	0 = Comparat	tor is disabled							
bit 14	COE: Compa	rator Output Er	hable bit						
	1 = Comparat	tor output is pre	esent on the C	xOUT pin					
bit 12		orator Output IS Inte	elliai Ulliy Dolority Soloot	hit					
DIL 13	1 = Comparat	tor output is inv		DI					
	0 = Comparat	tor output is not	t inverted						
bit 12-10	Unimplemen	ted: Read as '	כ'						
bit 9	CEVT: Compa	arator Event bit							
	1 = Compara	tor event acco	ording to EVF	POL<1:0> sett	ings occurred;	disables future	triggers and		
	interrupts until the bit is cleared								
hit 0		areter Output h							
DILO	When CPOL	= 0 (non-invert	nt ad polarity):						
	1 = VIN + > VII	<u>- 0 (11011-1117C110</u> N-	cu polanty).						
	0 = VIN + < VII	N-							
	When CPOL	= 1 (inverted po	olarity):						
	1 = VIN + < VII	N-							
bit 7.6		 Triagor/Eyopt 		arity Soloct bits	-				
bit 7-0	11 = Trigger/e		nenerated on	any change of	s f the comparato	r output (while (CEVT = 0		
	 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) 								
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.								
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.								
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)								
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.								
If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output.									
	00 = Trigger/e	event/interrupt	generation is	disabled					
				1	() (() -)				

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

27.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"					
	(DS70608) in the "dsPIC33/PIC24 Family					
	Reference Manual" for further information					
	on usage, configuration and operation of the					
	JTAG interface.					

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	-	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	-	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30		—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	-	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	_	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.