

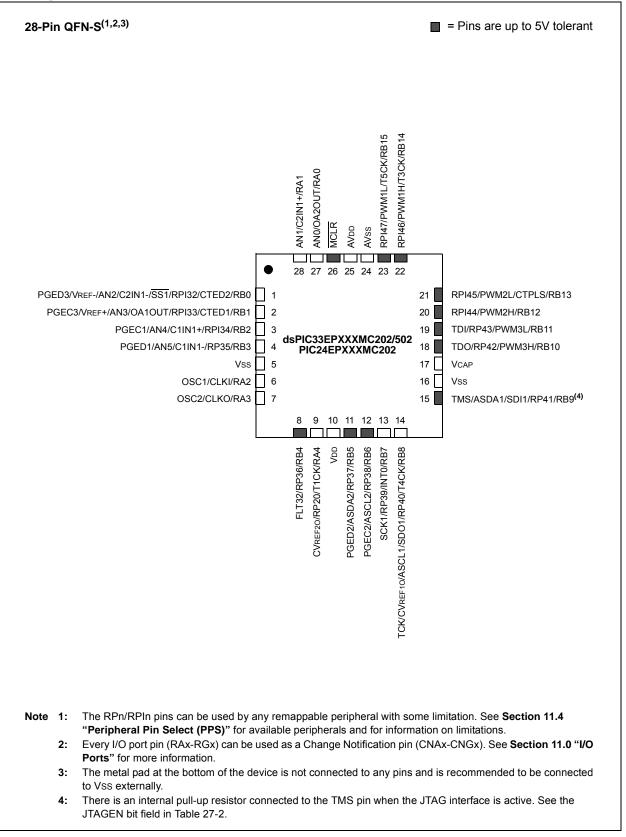
Welcome to E-XFL.COM

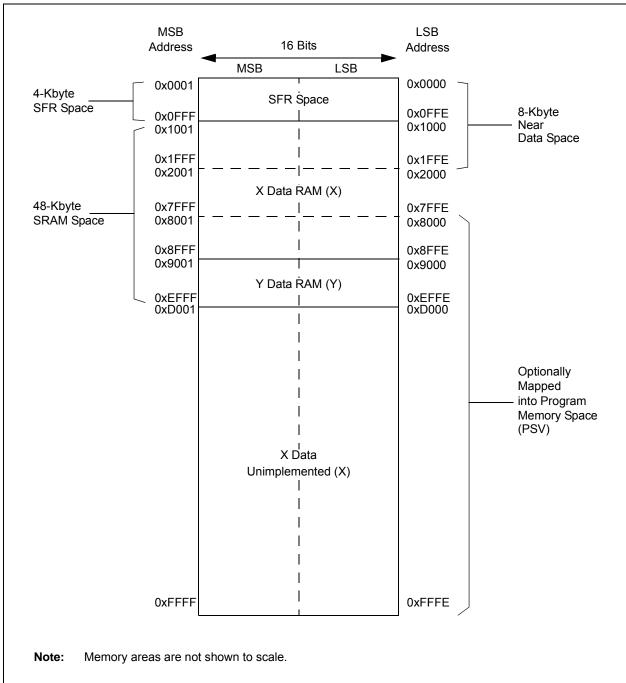
What is "Embedded - Microcontrollers"?

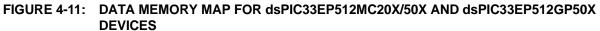
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Detuns	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc202-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

IABLE 4	ABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY										r							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV	<1:0>	-		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8							ł	POSCNT<31:	16>								0000
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE								INTTMR<15:	0>								0000
INT1TMRH	01D0		INTTMR<31:16> 00								0000							
INT1HLDL	01D2								INTHLD<15:)>								0000
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE								QEIGEC<31:	16>								0000
QEI1ICH	01DE		QEIIC<31:16> 000								0000							
QEI1LECL	01E0								QEILEC<15:)>								0000
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

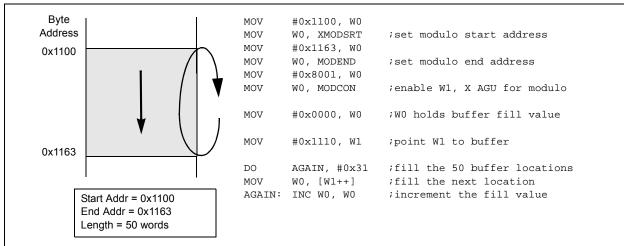
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
GIE	DISI	SWTRAP				_					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	—				INT2EP	INT1EP	INT0EP				
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown				
bit 15	GIE: Global	Interrupt Enable	e bit								
	1 = Interrupts and associated IE bits are enabled										
		s are disabled, I	•	still enabled							
bit 14	DISI: DISI	nstruction Statu	s bit								
		struction is active struction is not a	-								
bit 13	SWTRAP: Software Trap Status bit										
		e trap is enabled e trap is disabled									
bit 12-3	Unimpleme	nted: Read as '	0'								
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit						
		on negative edg									
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
		on negative edg									
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit						
		on negative edg									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 =	= 50 (default)					
	•						
	000000010 = 000000001 = 000000000 =	= 3					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32. NOTES:

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0				
bit 15	•						bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS				
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾				
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+				
R = Readable	a hit	W = Writable b			nented bit, read		L				
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.				
	FUR	I - DILIS SEL			aieu	x – Bit is unknov					
bit 15	ADON: ADO	C1 Operating M	ode bit								
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng								
bit 14	Unimpleme	nted: Read as	' 0 '								
bit 13	ADSIDL: A	DC1 Stop in Idle	e Mode bit								
	1 = Discontinues module operation when device enters Idle mode										
	0 = Continues module operation in Idle mode										
bit 12	ADDMABM: DMA Buffer Build Mode bit										
	1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA										
	channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather address to										
						size of the DMA b					
bit 11		nted: Read as									
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit							
	1 = 12-bit, 1-channel ADC operation										
	0 = 10-bit, 4	-channel ADC	operation								
bit 9-8	FORM<1:0>	Data Output I	Format bits								
		or 10-Bit Operation:									
		1 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)									
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)										
	01 = Signed integer (DOUT = ssss sssa aaaa aaaa aaaa, where s = .NOT.u<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd)										
	For 12-Bit C	peration:									
	11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<11>)										
	10 = Fractional (DOUT = dddd dddd dddd 0000) 01 = Signed integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)										
						(<11>)					

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

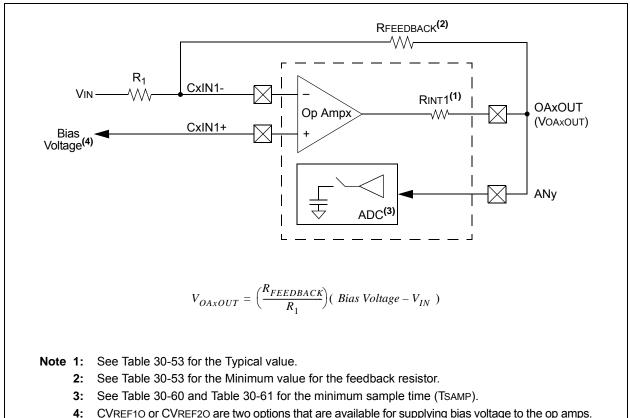
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS				
bit 7		00100					bit (
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit							
	1 = Generate	es Trigger wher	the broadcas	t command is	executed						
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed					
bit 14		mple Trigger P									
		es Trigger wher				al					
bit 13					mand is execute	a					
DIE 13		ADCTS2: Sample Trigger PTGO13 for ADC bit 1 = Generates Trigger when the broadcast command is executed									
					mand is execute	ed					
bit 12		ADCTS1: Sample Trigger PTGO12 for ADC bit									
	1 = Generate	1 = Generates Trigger when the broadcast command is executed									
					mand is execute	ed					
bit 11	-	IC4TSS: Trigger/Synchronization Source for IC4 bit									
					ast command is broadcast con		ited				
bit 10	IC3TSS: Trig	ger/Synchroniz	ation Source f	for IC3 bit							
					ast command is broadcast con		ited				
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source f	for IC2 bit							
					ast command is broadcast con		ited				
bit 8		ger/Synchroniz									
					ast command is broadcast con		ited				
bit 7	 Does not generate Trigger/Synchronization when the broadcast command is executed OC4CS: Clock Source for OC4 bit 										
		es clock pulse v generate clock			d is executed command is exe	cuted					
bit 6		ck Source for C	-								
		es clock pulse v aenerate clock			d is executed command is exe	cuted					
bit 5		ck Source for C	-								
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted					
	This register is rea PTGSTRT = 1).	-					and				
	This register is on	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L					
		.,			c.op commune	•					

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Parameter No.	Тур.	Max.	Units Conditions					
DC61d	8		μΑ	-40°C				
DC61a	10	—	μA	+25°C	2.21/			
DC61b	12	—	μA	+85°C	3.3V			
DC61c	13	—	μA	+125°C				

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (Δ Iwdt)⁽¹⁾

Note 1: The \triangle IwDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Parameter No. Typ. Max.			Doze Ratio	Units	Conditions				
Doze Current (IDOZE) ⁽¹⁾									
DC73a ⁽²⁾	35		1:2	mA	-40°C	3.3V	Fosc = 140 MHz		
DC73g	20	30	1:128	mA	-40 C				
DC70a ⁽²⁾	35	_	1:2	mA	+25°C	3.3V	Fosc = 140 MHz		
DC70g	20	30	1:128	mA	+25 C				
DC71a ⁽²⁾	35	—	1:2	mA	195%	3.3V			
DC71g	20	30	1:128	mA	+85°C		Fosc = 140 MHz		
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	3.3V	Ecco - 120 MH-		
DC72g	15	30	1:128	mA	+125 C		Fosc = 120 MHz		

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) statement
- · JTAG is disabled
- 2: Parameter is characterized but not tested in manufacturing.

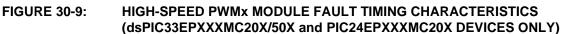
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
DO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			2.0 ⁽¹⁾	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0(1)		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5 ⁽¹⁾	—	—	V	$IOH \geq -22 mA, VDD = 3.3 V$	
			2.0 ⁽¹⁾	_	—		IOH \geq -18 mA, VDD = 3.3V	
			3.0(1)	_	—	1	IOH \geq -10 mA, VDD = 3.3V	

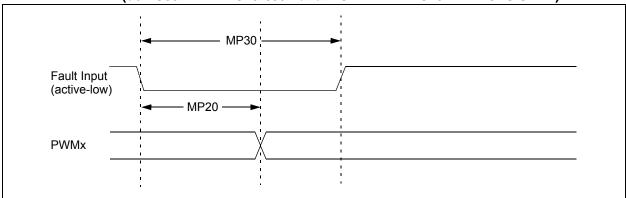
TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

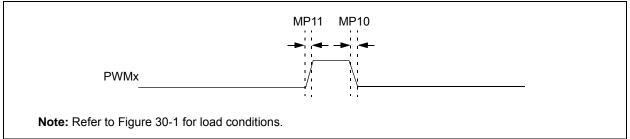
2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15


TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR


DC CHARACTERISTICS		$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.


2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions					
MP10	TFPWM	PWMx Output Fall Time		—	_	ns	See Parameter DO32	
MP11	TRPWM	PWMx Output Rise Time	_	—	_	ns	See Parameter DO31	
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns		
MP30	Tfh	Fault Input Pulse Width	15	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.