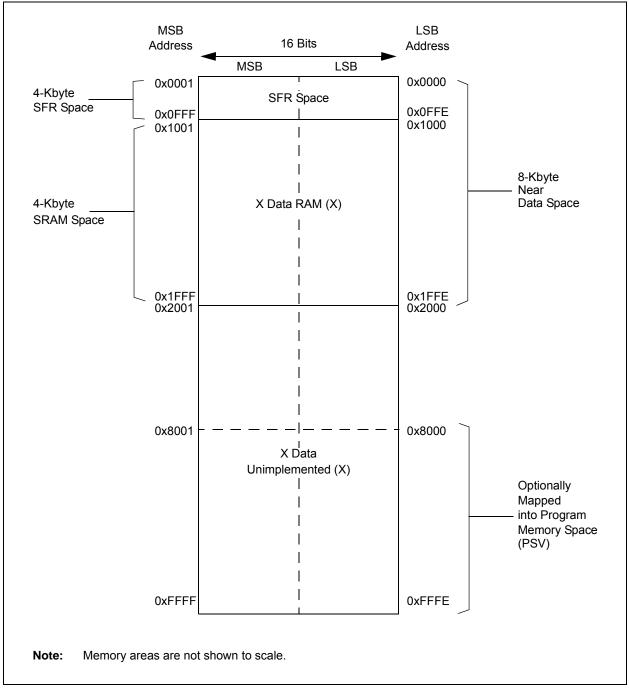
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4	-16:	QEI1	REGR		P FOR d	SPIC33E	PXXXMO	20X/50)	(AND PI	C24EP)		20X DE	VICES O	NLY	1			r
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV	<1:0>	-		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8							ł	POSCNT<31:	16>								0000
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE								INTTMR<15:	0>								0000
INT1TMRH	01D0											0000						
INT1HLDL	01D2											0000						
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE		QEIGEC<31:16> 000								0000							
QEI1ICH	01DE		QEIIC<31:16> 000								0000							
QEI1LECL	01E0		QEILEC<15:0> 000							0000								
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	—	_	_	_	_	—		NVMC)P<3:0>		0000
NVMADRL	072A								NVMAD	ADR<15:0>						0000		
NVMADRH	072C	_	_	_	_	-	_	_	_	NVMADR<23:16>						0000		
NVMKEY	072E			_	—	_		—	-	NVMKEY<7:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	0	COSC<2:0>		—	NOSC<2:0> CLKLOCK IOLOCK LOCK - CF - OSWEN					Note 2						
CLKDIV	0744	ROI	[OOZE<2:0>		DOZEN	F	RCDIV<2:0	0> PLLPOST<1:0> — PLLPRE<4:0>					0030				
PLLFBD	0746	_	_	_	_	—	_	_	– PLLDIV<8:0>					0030				
OSCTUN	0748	_	_	_	_	—	_	_	TUN<5:0>					0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL		RODI	V<3:0>		_	_	—	_	_	—	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾			OSWEN
bit 7							bit (
Legend:		y = Value set	from Configur	ation bits on F	POR		
R = Reada	able bit	W = Writable	-		mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
hit 1 <i>5</i>	Unimplemen	ted. Dood oo	0'				
bit 15	-	ted: Read as					
bit 14-12		Current Oscill			/)		
		C Oscillator (F C Oscillator (F					
		ower RC Oscil					
	100 = Reserv		()				
		y Oscillator (X		h PLL			
		y Oscillator (X					
		C Oscillator (F C Oscillator (F		le-by-N and Pl	LL (FRCPLL)		
bit 11		ted: Read as	,				
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	_S (2)			
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n			
		C Oscillator (F		le-by-16			
		ower RC Oscil	ator (LPRC)				
	100 = Reserv	/ed y Oscillator (X					
		y Oscillator (X		IFLL			
		C Oscillator (F		le-by-N and Pl	LL (FRCPLL)		
		C Oscillator (F		,	,		
bit 7		Clock Lock Ena					
				configurations	are locked; if (F	=CKSM0 = 0), t	then clock and
		figurations may d PLL selectio		ked, configurat	ions may be mo	odified	
bit 6		Lock Enable b		-	-		
	1 = I/O lock is	s active					
	0 = I/O lock is	s not active					
bit 5	LOCK: PLL L	ock Status bit	(read-only)				
		s that PLL is in s that PLL is ou			satisfied progress or PLL	is disabled	
Note 1:	Writes to this regis						ʻdsPIC33/
2:	Direct clock switch This applies to cloo mode as a transitio	es between ar ck switches in	y primary osci either directior	llator mode wi n. In these inst	th PLL and FRC ances, the appli	PLL mode are	
0	This bit should only						

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

NOTES:

REGISTE	R 16-7: PWMC	CONX: PWMX (CONTROL R	EGISTER			
HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	·	•		÷			bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC1		DTCP ⁽³⁾	0-0	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7	DICO	DICE	_	INT DO	CAIM	AFRES'	bit
							<u> </u>
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Reada	able bit	W = Writable bi	t	U = Unimple	mented bit, rea	ıd as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	ELTSTAT: ES	ult Interrupt Statu	is hit(1)				
DIL 15		rrupt is pending					
		interrupt is pendi	ng				
		ared by setting F					
bit 14		rent-Limit Interru	•				
		mit interrupt is pe					
		nt-limit interrupt is ared by setting C					
bit 13		igger Interrupt S					
		terrupt is pendin					
		r interrupt is pen					
		ared by setting T					
bit 12		t Interrupt Enable	e bit				
		rrupt is enabled rrupt is disabled	and the FLTS	TAT bit is clear	ed		
bit 11		ent-Limit Interrup			cu .		
		mit interrupt is er					
		mit interrupt is di		e CLSTAT bit is	s cleared		
bit 10	TRGIEN: Trig	ger Interrupt En	able bit				
		event generates			T hit is cleared		
bit 9		vent interrupts ar dent Time Base I			i bit is cleared		
DIL 9		register provides		riad for this PM	VM generator		
		egister provides f	•		•		
bit 8		er Duty Cycle Re					
		ister provides du jister provides du				r	
Note 1:	Software must clea				-		t controller
Note 1. 2:	These bits should	-		-	-	the interrup	
3:	DTC<1:0> = 11 fo	-		-	-		
4:	The Independent T CAM bit is ignored	Time Base (ITB =		•		igned mode. If	TTB = 0, the
5:	To operate in Exter		t mode, the IT	B bit must be '	1' and the CLM	10D bit in the I	FCLCONx

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

17.2 QEI Control Registers

	REGISTER 17-1:	QEI1CON: QEI1 CONTROL REGISTER
--	----------------	--------------------------------

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7								
bit 15 bit 2 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 - INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 - - INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 15 GEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 Endotit 1 Endotit Interface Module Counters are enabled 0 Endotit Interface	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 0 Dit 7 Dit 7 Dit 7 Dit 7 Dit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' Dit 7 en value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to Dit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode Di Continues module operation on In Idle mode Dit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 100 = Modulo Count mode for position counter 101 = Resets the position counter 101 = Resets the position counter with contents of QEI1IC register 101 = Resets the position counter when the position counter with contents of QEI1IC register 000 = Index input e	QEIEN	_	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ⁽²⁾	IMV0 ⁽²⁾
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation unter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event frees the position counter 110 = Resets the position counter 11 = Reserved 11 = First index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register	bit 15							bit 8
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation unter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event frees the position counter 110 = Resets the position counter 11 = Reserved 11 = First index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register								
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD-2:0-: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Resets the position counter 101 = Resets the position counter when the position counter with contents of QEI1IC register 101 = Nexet input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 011 = Every index input event resets the position counter 012 = Nease B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 <t< td=""><td>U-0</td><td></td><td></td><td></td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td></t<>	U-0				R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 bit 14 Unimplemented: Read as '0' 0 bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Reserved 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 101 = First index vent after home event initializes position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 010 = Next index input event does not affect position counter 001 = Every index input event after home event initializes position counter with contents of QEI1IC register		INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	Logondy							
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 14 Unimplemented: Read as '0' 0' 0' Bit is cleared 0 = Continues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI11C register 100 = Second index event after home event initializes position counter with contents of QEI11C register 10 = Next index input event resets the position counter with contents of QEI11C register 101 = Every index input event resets the position counter 00 = Index input event does not affect position counter 001 = Every index input event genst bit ⁽²⁾ 1 = Phase B match occurs when QEB = 1 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEA = 1 015 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 015 = Phase A match occurs when QEA =		lo hit		hit	II – Unimplor	monted bit read	ac '0'	
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 001 = Nevery index input eve					•			
 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index Match Value for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	-n = value a	PUR	I = Bit is set		0 = Bit is cle	ared	x = Bit is unkr	IOWN
bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 001 = Every index input event for position counter 001 = Index input event does not affect position counter 000 = Index input event does not affect position counter 001 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0it 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0it 7 Unimplemented: Read as '0'	bit 15	1 = Module co	ounters are ena	abled				
 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event operation when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 14	Unimplemen	ted: Read as '	0'				
 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event QEB = 1 0 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 	bit 13	QEISIDL: QE	I Stop in Idle M	lode bit				
 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0 = Phase B match occurs when QEB = 0 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0 = Phase A match occurs when QEA = 0 						dle mode		
 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 12-10	PIMOD<2:0>	: Position Cour	nter Initializatio	on Mode Selec	t bits ⁽¹⁾		
1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'		110 = Modulo 101 = Resets 100 = Second 011 = First in 010 = Next in 001 = Every i	b Count mode f the position co d index event a dex event after idex input even index input even	bunter when the fter home event home event in t initializes the put resets the p	e position cou at initializes posi nitializes positi position coun position counte	sition counter wit on counter with ter with contents	h contents of C contents of QE	EI1IC register
0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 9	IMV1: Index I	Match Value for	⁻ Phase B bit ⁽²)			
bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'								
1 = Phase A match occurs when QEA = 10 = Phase A match occurs when QEA = 0bit 7Unimplemented: Read as '0'					N			
0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 8				1			
bit 7 Unimplemented: Read as '0'								
	bit 7							
		•			inters onerate	as timers and th		> hits are

Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

	1	U-0	0-0	0-0	0-0	U-0
DMABS1	DMABS0		—	—	—	—
						bit 8
					DAMO	
0-0	0-0		1	-	-	R/W-0
—	—	FSA4	FSA3	FSA2	FSA1	FSA0
						bit 0
bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	fers in RAM fers in RAM fers in RAM ers in RAM ers in RAM ers in RAM	,				
-						
11111 = Rea	d Buffer RB31	with Buffer b	its			
	DMABS<2:0 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplement FSA<4:0>: F 11111 = Rea	DMABS1 DMABS0 U-0 U-0 — — bit W = Writable to the second seco	DMABS1 DMABS0 — U-0 U-0 R/W-0 — — FSA4 bit W = Writable bit POR '1' = Bit is set DMABS 2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 010 = 6 buffers in RAM 000 = 4 buffers in RAM 000 = 4 buffers in RAM 000 = 4 buffers in RAM 011 = 6 buffers in RAM 001 = 6 buffers in RAM 001 = 8 buffers in RAM 001 = 8 buffers in RAM 000 = 4 buffers in RAM 111 = Read Buffer RB31	DMABS1 DMABS0 — — U-0 U-0 R/W-0 R/W-0 — — FSA4 FSA3 bit W = Writable bit U = Unimplen POR '1' = Bit is set '0' = Bit is clear DMABS -: :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS :0' = Bit is clear :0' = Bit is clear DMABS : DMA Buffers in RAM :0' = Bit is clear 100 = 16 buffers in RAM :01 = 12 buffers in RAM :01 = 8 buffers in RAM 001 = 6 buffers in RAM :00 = 4 buffers in RAM :00 = 4 buffers in RAM 000 = 4 buffers in RAM :0' = FIFO Area Starts with Buffer bits :1111 = Read Buffer RB31	DMABS1 DMABS0 — <th< td=""><td>DMABS1 DMABS0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FSA4 FSA3 FSA2 FSA1 bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn DMABS 2:0>: DMA Buffer Size bits 111 = Reserved 10 = 32 buffers in RAM 101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM Unimplemented: Read as '0' FSA FSA FSA FSA FSA U111 = Read Buffer RB31 East with Buffer bits 1111 = Read Buffer RB31</td></th<>	DMABS1 DMABS0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 FSA4 FSA3 FSA2 FSA1 bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn DMABS 2:0>: DMA Buffer Size bits 111 = Reserved 10 = 32 buffers in RAM 101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM Unimplemented: Read as '0' FSA FSA FSA FSA FSA U111 = Read Buffer RB31 East with Buffer bits 1111 = Read Buffer RB31

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15B	P<3:0>			F14BI	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1010 0		P<3:0>				P<3:0>	1010 0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	1111 = Filte 1110 = Filte	RX Buffer Ma r hits received in r hits received in r hits received in r hits received in r hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	differ 4			
bit 11-8	F14BP<3:0;	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)	
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	3 bits (same val	ues as bits<15	:12>)	
bit 3-0	F12BP<3:0:	RX Buffer Ma	sk for Filter 1	2 bits (same val	ues as bits<15	:12>)	

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15		1		11			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	_
bit 7				1 1		1	bit (
Legend:							
R = Readabl	le bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit			
	1 = Edge 1 is	s edge-sensitive	9				
	•	s level-sensitive					
bit 14		dge 1 Polarity					
		s programmed f					
L:1 40 40	•	s programmed f	•	•			
bit 13-10	1xxx = Rese	:0>: Edge 1 So	urce Select bits	5			
	01xx = Rese						
	0011 = CTEE						
	0010 = CTEE	•					
	0001 = OC1						
hit O	0000 = Timer		:+				
bit 9		Edge 2 Status b		vritten to control	the odge cou	reo	
	1 = Edge 2 h				the edge sou	ice.	
		as not occurred	ł				
bit 8	EDG1STAT: E	Edge 1 Status b	it				
			1 and can be v	vritten to control	the edge sou	rce.	
	1 = Edge 1 h						
	-	as not occurred					
bit 7		Edge 2 Edge Sa		Selection bit			
		s edge-sensitive s level-sensitive					
bit 6	•	dge 2 Polarity					
Sit 0		s programmed f		dae response			
		s programmed f					
bit 5-2	EDG2SEL<3	:0>: Edge 2 So	urce Select bits	3			
	1111 = Rese	rved					
	01xx = Rese						
	0100 = CMP ² 0011 = CTEE						
	0010 = CTEE						
		Ji pili					
	0001 = OC1	module					
		module					

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0						
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0						
bit 15		•	·				bit 8						
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0						
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—						
bit 7			•				bit (
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe						
bit 14	Unimplemen	ted: Read as '	0'										
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit		CSIDL: CRC Stop in Idle Mode bit								
		ues module op		device enters ode	ldle mode								
bit 12-8	0 = Continue VWORD<4:0:	s module opera	ation in Idle m e bits	ode									
bit 12-8	0 = Continue VWORD<4:0: Indicates the	s module opera	ation in Idle m e bits	ode		of 8 when PLE	N<4:0> > 7						
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module oper >: Pointer Valu number of valio	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7						
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7						
bit 12-8 bit 7 bit 6	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7						
bit 7	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is e	s module operatives >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7						
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull not full RC FIFO Empty empty not empty	ation in Idle m e bits d words in the t v Bit	ode		of 8 when PLE	N<4:0> > 7						
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull NC FIFO Empty empty not empty RC Interrupt Se	ation in Idle m e bits d words in the t v Bit election bit	ode FIFO. Has a m	naximum value		N<4:0> > 7						
bit 7 bit 6	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull AC FIFO Empty empty not empty RC Interrupt Secon FIFO is emptore on FIFO is emptore	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7						
bit 7 bit 6 bit 5	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is composition	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7						
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is ft 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is compared	ation in Idle m e bits d words in the t election bit pty; final word plete and CRO	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7						
bit 7	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull Not full RC FIFO Empty mpty not empty RC Interrupt Secon FIFO is emponent on FIFO is emponent on shift is component t CRC bit	ation in Idle m e bits d words in the t / Bit election bit pty; final word plete and CRC	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7						
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serii LENDIAN: Data 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit ull and full C FIFO Empty empty and empty RC Interrupt Secon on FIFO is emplor on shift is com t CRC bit RC serial shifter ial shifter is turn ata Word Little-	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Config	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7						
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC seriit LENDIAN: Data 1 = Data wor 	s module operatives Pointer Value number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is emplored on FIFO is emplored on Shift is com- t CRC bit RC serial shifter ial shifter is turnata Word Little- d is shifted into	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Configo the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready Sb (little endiar	CRC	N<4:0> > 7						
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wort 0 = Data wort 	s module operatives Pointer Value number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is emplored on FIFO is emplored on Shift is com- t CRC bit RC serial shifter ial shifter is turnata Word Little- d is shifted into	ation in Idle m e bits d words in the t d Bit election bit pty; final word plete and CRC r med off Endian Config the CRC star o the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7						

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
1 ADD		ADD	Acc ⁽¹⁾	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SE
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
-		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
•	Diai	BRA	GE, Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT, Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT, Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	· -	Branch if Not Zero	1	1 (4)	None
		BRA	NZ, Expr OA, Expr ⁽¹⁾	Branch if Accumulator A overflow	1	1 (4)	None
			OB, Expr ⁽¹⁾	Branch if Accumulator B overflow	1		None
		BRA	OV, Expr(1)	Branch if Overflow		1 (4)	
		BRA	SA, Expr ⁽¹⁾		1	1 (4)	None
		BRA		Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB, Expr ⁽¹⁾	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
-	 	BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

TABLE 30-24	TIMER2 AND TIM	IER4 (TYPE B TIMER	R) EXTERNAL CLOCK TIMING REQUIREMENTS	j.
--------------------	----------------	--------------------	---------------------------------------	----

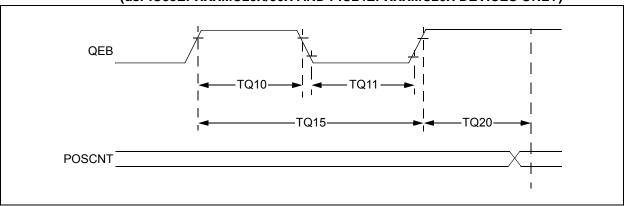

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Тсү + 20	_	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, with prescaler	2 Tcy + 40	—	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

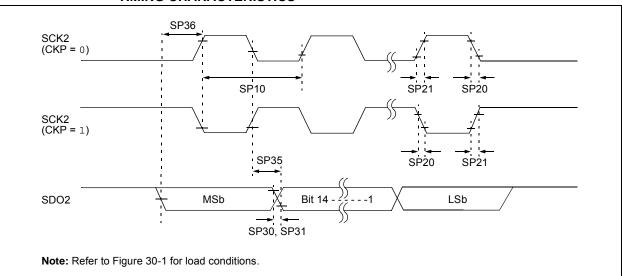


TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

АС СНА	RACTERIST	īcs	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	—	_	15	MHz	(Note 3)	
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	-	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

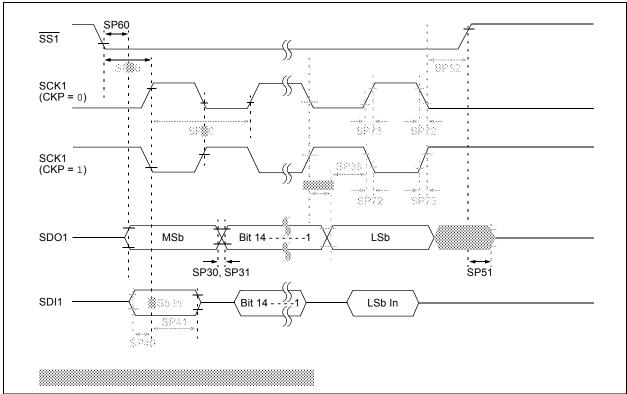
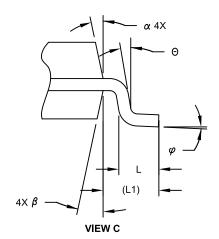


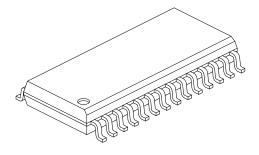
FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30		—	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—		50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е		10.30 BSC			
Molded Package Width	E1		7.50 BSC			
Overall Length	D		17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2