

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc203-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000		W4 :										xxxx					
W5	000A		W5 :										xxxx					
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E		W15 2									xxxx						
SPLIM	0020								SPLI	Л								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	н								0000
ACCAU	0026			Się	gn Extensio	n of ACCA<	39>						AC	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	н								0000
ACCBU	002C			Się	gn Extensio	n of ACCB<	39>						AC	CBU				0000
PCL	002E							P	CL<15:0>								—	0000
PCH	0030	_	—	—	—	_	-	—	—	—				PCH<6:0>				0000
DSRPAG	0032	_	—	—	—	_	-					DSRPAC	G<9:0>					0001
DSWPAG	0034	_	—	—	—	_	-	—				DS	WPAG<8:	0>				0001
RCOUNT	0036								RCOUNT<	:15:0>								0000
DCOUNT	0038								DCOUNT<	:15:0>								0000
DOSTARTL	003A	DOSTARTL<15:1> — 0									0000							
DOSTARTH	003C	_								0000								
DOENDL	003E	DOENDL<15:1> - 000									0000							
DOENDH	0040	_	_	—	—	_	_	_	—	_	_			DOEND)H<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLE 4-2	LE 4-23. ECANT REGISTER MAP WHEN WIN (CTCTRLT<0>) = 1 FOR USFIC33EF AAAMO(GF30A DEVICE3 ONLT (CONTINUED))																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E	EID<15:8>					EID<7:0>						xxxx					
C1RXF12SID	0470		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx	
C1RXF12EID	0472	EID<15:8>						EID<7:0>						xxxx				
C1RXF13SID	0474		SID<10:3>						SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx		
C1RXF13EID	0476				EID<	<15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	<10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A		EID<15:8>				EID<7:0>						xxxx					
C1RXF15SID	047C	SID<10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx				
C1RXF15EID	047E	EID<15:8> EID<7:0>									xxxx							

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP118R<5:0>							
bit 15	t 15 bit 8									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—		_	_	_	—	—			
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP120R<5:0>							
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽¹⁾	—	TSIDL	—	_	—	—	—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0					
	TGATE	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—					
bit 7							bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
		(4)										
bit 15	TON: Timer1	On bit ⁽¹⁾										
	1 = Starts 16-	bit Limer1 bit Timer1										
bit 1/	Unimplement	0 = Stops 16-bit Timeri										
bit 13		1 Stop in Idle N	lode hit									
DIC 15	1 = Discontinu	i stop in lae k	eration when a	device enters l	dle mode							
	0 = Continues	 Discontinues module operation when device enters idle mode Continues module operation in Idle mode 										
bit 12-7	Unimplement	Unimplemented: Read as '0'										
bit 6	TGATE: Time	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS =	<u>1:</u> prod										
	When TCS =	0. 0.										
	1 = Gated tim	<u>e</u> accumulatior	n is enabled									
	0 = Gated tim	e accumulatior	n is disabled									
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits								
	11 = 1:256											
	10 = 1:64 01 = 1:8											
	01 = 1.0 00 = 1.1											
bit 3	Unimplement	ted: Read as ')'									
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	chronization Se	elect bit ⁽¹⁾							
	When TCS =	1:										
	1 = Synchroni	izes external cl	ock input									
	0 = Does not	synchronize ex	ternal clock in	nput								
	This bit is jand	<u>ored</u> .										
bit 1	TCS: Timer1 (Clock Source S	Select bit ⁽¹⁾									
	1 = External c	lock is from pir	n, T1CK (on th	ne rising edge)								
	0 = Internal cl	ock (FP)		5 5-7								
bit 0	Unimplement	ted: Read as ')'									
Note 1: \	When Timer1 is en attempts by user so	abled in Exterr oftware to write	al Synchrono to the TMR1	us Counter mo register are ig	ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any					

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode
		00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When Set to '1':
		If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
		II DI CMPX = 1, PWWXH IS SNOTENED and PWWXL IS lengthened.
		When Set to 0.2. If DTCMPx = 0. PW/MxH is shortened and PW/MxL is lengthened
		If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source
		for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGIS	TER
---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-20:	CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
	REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15	•		•	•			bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0	_	MIDE	—	EID17	EID16		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 15-5	SID<10:0>: S	Standard Identif	ier bits						
	1 = Includes I	bit, SIDx, in filte	er comparisor	1					
		s a don't care ir	n filter compa	rison					
bit 4	Unimplemen	ted: Read as '	0'						
bit 3	MIDE: Identif	ier Receive Mo	de bit						
	1 = Matches	only message ty	/pes (standar	d or extended a	ddress) that corre	espond to EXID	E bit in the filter		
	0 = Matches	either standard	or extended a	address messag	ge if filters match	(i.e., if (Filter SI	D) = (Message		
	SID) or if	(Filter SID/EID)		SID/EID))					
bit 2	Unimplemen	ted: Read as '	0'						
bit 1-0	EID<17:16>:	Extended Iden	tifier bits						
	1 = Includes	bit, EIDx, in filt	er compariso	n					
	0 = EIDx bit is a don't care in filter comparison								

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7	·				•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op Amp/Comparator

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-13 bit 12-8	bit 15-13 PTGCLK<2:0>: Select PTG Module Clock Source bits 111 = Reserved 101 = PTG module clock source will be T3CLK 100 = PTG module clock source will be T2CLK 011 = PTG module clock source will be T1CLK 010 = PTG module clock source will be TAD 001 = PTG module clock source will be Fosc 000 = PTG module clock source will be FP bit 12-8							
	11111 = Divic 11110 = Divic • • • • • • • • • • • • • • • • • • •	de-by-32 de-by-31 de-by-2 de-by-1						
bit 7-4	PTGPWD<3:0	0>: PTG Trigge	er Output Pulse	e-Width bits				
	<pre>Sit 7-4 FIGFWD<3:0>: FIG Ingger Output Pulse-Width bits 1111 = All trigger outputs are 16 PTG clock cycles wide 1110 = All trigger outputs are 15 PTG clock cycles wide</pre>							
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	PTGWDT<2:0	0>: Select PTG	Watchdog Tir	mer Time-out	Count Value bits	3		
	111 = Watcho 110 = Watcho 101 = Watcho 100 = Watcho 011 = Watcho 010 = Watcho 001 = Watcho 000 = Watcho	dog Timer will t dog Timer is dis	ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 1 ime-out after 8 sabled	512 PTG clock 256 PTG clock 28 PTG clock 54 PTG clock 54 PTG clocks 52 PTG clocks 53 PTG clocks	S S S			

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS				d Operat otherwis ng temper	ing Cond e stated) ature -4 -4	itions: 3 0°C ≤ TA 0°C ≤ TA	.0V to 3.6V A \leq +85°C for Industrial A \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	_	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						vise stated)	
Param No. Characteristic Min. Typ. Max. Units Conditions						ons	
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	<u>(</u> 1)			
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V
		-1	0.5	+1	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min. Typ. Max. Units Conditions			ons			
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30		+30	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V	
		-20		+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-30		+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: The change of LPRC frequency as VDD changes.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHAF	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	nbol Characteristic		Тур	Max	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode) ⁽¹⁾		
HAD20a	Nr	Resolution ⁽³⁾	1:	2 Data B	its	bits	
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23a	Gerr	Gain Error	-10	—	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD24a	EOFF	Offset Error	-5	—	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
		Dynamic	Performa	nce (12·	Bit Mode	e) ⁽²⁾	
HAD33a	FNYQ	Input Signal Bandwidth	_	_	200	kHz	

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$									
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions					
ADC Accuracy (10-Bit Mode) ⁽¹⁾												
HAD20b	Nr	Resolution ⁽³⁾	10 Data Bits		bits							
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD23b	Gerr	Gain Error	-2.5	_	2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
Dynamic Performance (10-Bit Mode) ⁽²⁾												
HAD33b	Fnyq	Input Signal Bandwidth		_	400	kHz						

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	e		0.80 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12