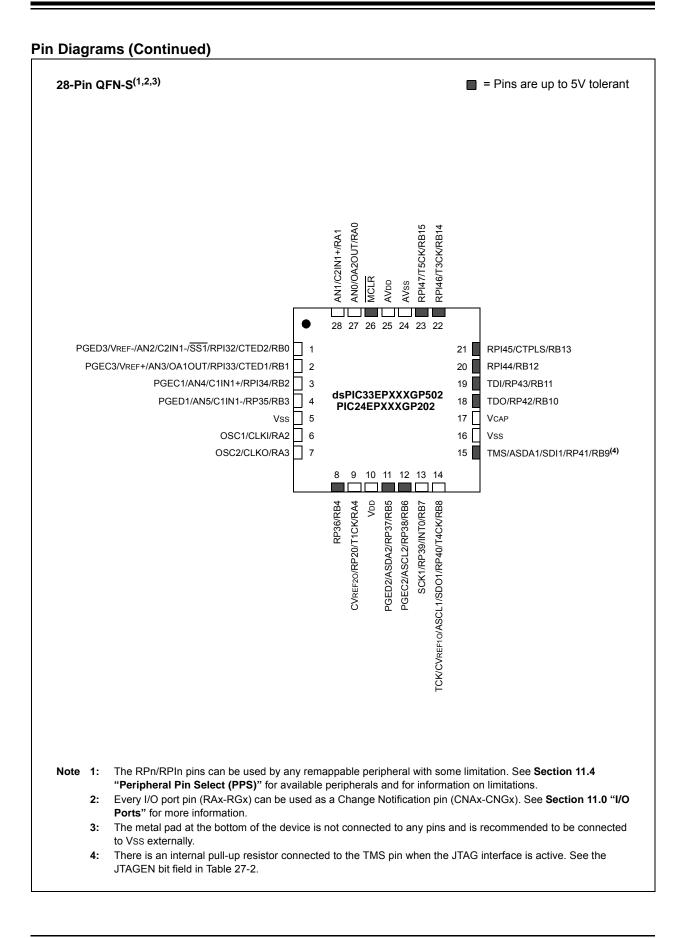


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

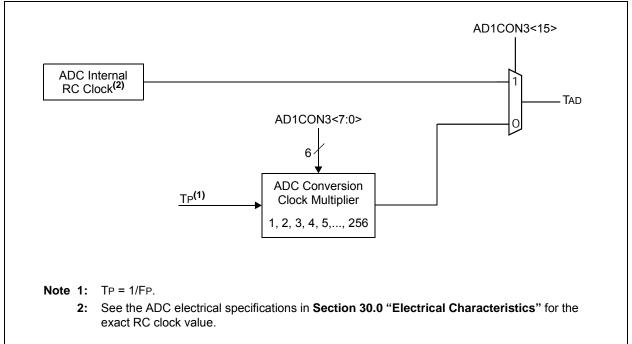
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc203t-e-tl

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—			—	_	_	ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0 U-		U-0	R/W-0	R/W-0	R/W-0		
_		_	_		DMABL2	DMABL1	DMABL0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-9	Unimplemented: Read as 'O'								
bit 8	ADDMAEN: ADC1 DMA Enable bit								
	1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA O = Conversion results are stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used								
bit 7-3	Unimplemented: Read as '0'								
bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits						ut bits			
	110 = Allocat 101 = Allocat 100 = Allocat 011 = Allocat	es 128 words of es 64 words of l es 32 words of l es 16 words of b es 8 words of b es 4 words of b	buffer to each buffer to each buffer to each uffer to each uffer to each	n analog input n analog input n analog input analog input analog input	t				

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
CSS31	CSS30		_		CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_	_	_	—	_		
bit 7	•						bit C		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	CSS31: ADC	I Input Scan S	election bit						
					input scan (Ope				
	•	•		surement for ir	iput scan (Open)			
bit 14		I Input Scan S							
					r input scan (CT nput scan (CTM				
bit 13-11	-	ted: Read as '	•						
bit 10	-								
	CSS26: ADC1 Input Scan Selection bit ⁽²⁾ 1 = Selects OA3/AN6 for input scan								
	O = Skips OA3/AN6 for input scan								
bit 9 CSS25: ADC1 Input Scan Selection bit ⁽²⁾									
	1 = Selects OA2/AN0 for input scan								
	0 = Skips OA2	2/AN0 for input	scan						
bit 8	CSS24: ADC1 Input Scan Selection bit ⁽²⁾								
	1 = Selects O	A1/AN3 for inp	ut scan						
	0 = Skips OA	1/AN3 for input	scan						
bit 7-0	Unimplemented: Read as '0'								
Note 1: A	II AD1CSSH bits	can be selecte	d by user soft	ware Howeve	r innuts selected	d for scan with	out a		

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

³⁻⁰ Step Commar	option<3:0>	Option Description
PTGCTRL(¹⁾ 0000	Reserved.
	0001	Reserved.
	0010	Disable Step Delay Timer (PTGSD).
	0011	Reserved.
	0100	Reserved.
	0101	Reserved.
	0110	Enable Step Delay Timer (PTGSD).
	0111	Reserved.
	1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
	1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
	1010	Reserved.
	1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
	1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
	1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
	1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
	1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
	0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
	0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
	0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
	0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).
	0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
	0110	Reserved.
	0111	Reserved.
PTGCOP	1) 1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
	1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
	1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
	1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
	1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
	1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
	1110	Reserved.
	1111	Reserved.

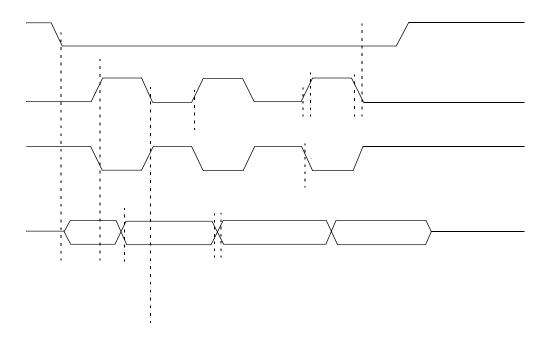
TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOPinstruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units		Conditions	
	liL	Input Leakage Current ^(1,2)					
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in at high-impedance} \end{split}$
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$


TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

