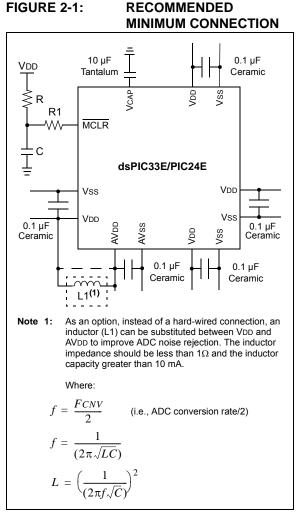


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc204t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

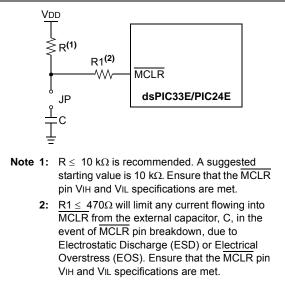
2.3 CPU Logic Filter Capacitor Connection (VCAP)

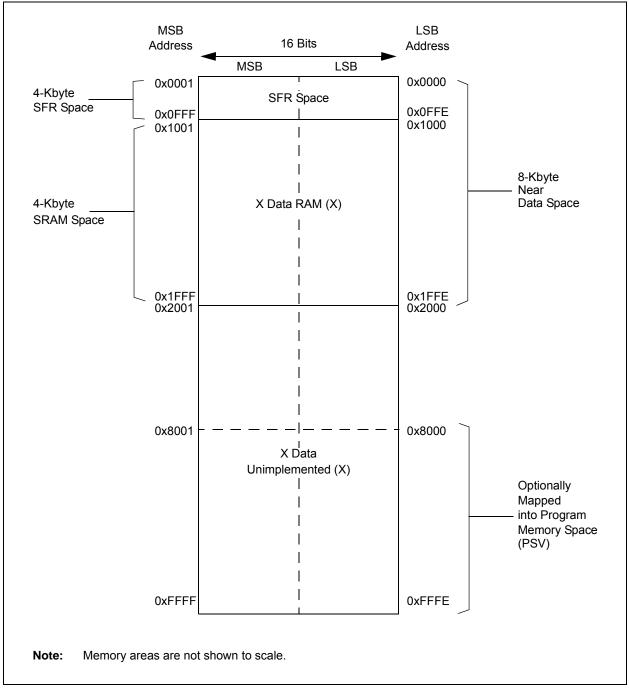
A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging.


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE 4	4-9:	INPUT		JRE 1 T	HROUG	H INPU	Т САРТ	URE 4	REGIST	ER MA	Р							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	—	ICSIDL	10	CTSEL<2:0	>	—	-	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	_	_		_		—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC1BUF	0144							Inp	ut Capture '	1 Buffer Reg	gister							xxxx
IC1TMR	0146								Input Capt	ture 1 Time	r							0000
IC2CON1	0148		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2CON2	014A		_				—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC2BUF	014C							Inp	ut Capture 2	2 Buffer Reg	gister							xxxx
IC2TMR	014E								Input Capt	ture 2 Time	r							0000
IC3CON1	0150		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152		_				—	—	IC32	ICTRIG	TRIGSTAT			S	YNCSEL<4	:0>		000D
IC3BUF	0154							Inp	ut Capture 3	3 Buffer Reg	gister							xxxx
IC3TMR	0156								Input Capt	ture 3 Time	r							0000
IC4CON1	0158		_	ICSIDL	10	CTSEL<2:0	>	—	_		ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	_	_		-		-	_	IC32	ICTRIG	TRIGSTAT	-		S	YNCSEL<4	:0>		000D
IC4BUF	015C							Inp	ut Capture 4	4 Buffer Reg	gister							xxxx
IC4TMR	015E								Input Capt	ure 4 Time	r							0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_	_	TRISA10	TRISA9	TRISA8	TRISA7	-	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	0E02		_	_	-	_	RA10	RA9	RA8	RA7	-	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	LATA10	LATA9	LATA8	LATA7	-	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	—	—	_		ODCA10	ODCA9	ODCA8	ODCA7	—	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	—	—	_		CNIEA10	CNIEA9	CNIEA8	CNIEA7	—	—	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	—	—	_		CNPUA10	CNPUA9	CNPUA8	CNPUA7	—	—	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	—	—	_		CNPDA10	CNPDA9	CNPDA8	CNPDA7	—	—	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	_	_	_	—	_	—	_	_	—	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	-	-	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	—	_	_		—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	0E22	_	_	-	_	_	—	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	—	—	_	_		—	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	—	—	_	_		—	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	—	—	_	_		—	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	—	—	_	_		—	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	—	—	_	_		—	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	—	—	_	_		—	_				—		_	ANSC2	ANSC1	ANSC0	0007

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—	
bit 15	I	1	1				bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit (
lagandi		SO - Sottab	la Only hit				
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	
		1 - Dit 13 30					lowin
bit 15	WR: Write Co	ontrol bit(1)					
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is
	cleared b	y hardware o	nce the operati	on is complete			
	-		ration is comple	ete and inactive	9		
bit 14	WREN: Write		n/erase operati	000			
			/erase operatio				
oit 13			Error Flag bit ⁽¹⁾				
	1 = An impro	per program o	r erase sequend		rmination has oc	curred (bit is se	t automatically
		et attempt of th	e WR bit) operation com	olotod pormally			
bit 12			le Control bit ⁽²⁾	Sieteu normaliy			
			r goes into Star	ndbv mode duri	ina Idle mode		
			r is active durin				
bit 11-4	Unimplemen	ted: Read as	'0'				
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)			
	1111 = Rese						
	1110 = Rese 1101 = Rese						
	1100 = Rese						
	1011 = Rese						
	1010 = Rese 0011 = Memo		e operation				
	0010 = Rese	rved	-				
			ord program ope	eration ⁽⁵⁾			
	0000 = Rese	rvea					
	These bits can onl	-					
	If this bit is set, the (TVREG) before Fla				d upon exiting lo	dle mode, there	is a delay
	All other combinati		•				
. .				in ploinenteu.			
4:	Execution of the P	wrsav instruc	tion is ianored	while any of th	e NVM operatio	ns are in progr	ess.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U1RXR<6:0>	>		
bit 7							bit 0

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
	—		_	_	—	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U2RXR<6:0>	>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

^{0000000 =} Input tied to Vss

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ^(1,3)	—
bit 7							bit 0

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Tin	nery On bit ⁽¹⁾		
		s 16-bit Timery s 16-bit Timery		
bit 14	•	mented: Read as '0'		
bit 13	-	imery Stop in Idle Mode bit	2)	
		ontinues module operation winues module operation in Id	when device enters Idle mode lle mode	
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumu	lation Enable bit ⁽¹⁾	
	When TC This bit is	<u>CS = 1:</u> s ignored.		
		<u>CS = 0:</u> d time accumulation is enab d time accumulation is disab		
bit 5-4	TCKPS<	1:0>: Timery Input Clock Pre	escale Select bits ⁽¹⁾	
	11 = 1:2 5			
	10 = 1:64 01 = 1:8	1		
	01 = 1.8			
bit 3-2	Unimple	mented: Read as '0'		
bit 1	-	nery Clock Source Select bit	(1,3)	
		nal clock is from pin, TyCK (nal clock (FP)	(on the rising edge)	
bit 0	Unimple	mented: Read as '0'		
		peration is enabled (T2CON set through TxCON.	<3> = 1), these bits have no e	ffect on Timery operation; all ti

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	<u> </u>	—	_		_	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit				
		SPIx support is e SPIx support is d		x pin is used as	Frame Sync	oulse input/outpu	it)
bit 14	SPIFSD: Fra	me Sync Pulse [Direction Co	ontrol bit			
		ync pulse input (ync pulse output					
bit 13	FRMPOL: Fr	ame Sync Pulse	Polarity bit	t			
		ync pulse is activ	•				
		ync pulse is activ					
bit 12-2	-	nted: Read as '0					
bit 1		ame Sync Pulse	-				
		ync pulse coincio ync pulse preceo					
bit 0	SPIBEN: En	hanced Buffer Er	nable bit				
		d buffer is enable					
	0 = Enhance	d buffer is disabl	ed (Standa	rd mode)			

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0		
bit 7							bit 0		
Legend:	nd: C = Writable bit, but only '0' can be written to clear the bit								

Legend:	C = Writable bit, but only '0'	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but or	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0											
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7				1			bit				
Legend:											
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown				
bit 15	HLMS: High	or Low-Level N	lasking Select	bits							
	•		•		erted ('0') compa	rator signal from	n propagatin				
					erted ('1') compa						
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	OCEN: OR G	ate C Input Er	able bit								
	1 = MCI is co	nnected to OR	gate								
	0 = MCI is no	t connected to	OR gate								
bit 12		Gate C Input I		e bit							
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 										
				jate							
bit 11	OBEN: OR Gate B Input Enable bit 1 = MBI is connected to OR gate										
		nnected to OR t connected to	•								
bit 10			•	a hit							
		DBNEN: OR Gate B Input Inverted Enable bit L = Inverted MBI is connected to OR gate									
	0 = Inverted MBI is not connected to OR gate										
bit 9		ate A Input En	-								
		1 = MAI is connected to OR gate									
	0 = MAI is no	t connected to	OR gate								
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit							
		nverted MAI is connected to OR gate									
		MAI is not conr	-								
bit 7	NAGS: AND Gate Output Inverted Enable bit 1 = Inverted ANDI is connected to OR gate										
		 Inverted ANDI is not connected to OR gate PAGS: AND Gate Output Enable bit									
bit 6											
bit 6		onnected to O									
bit 6	1 = ANDI is c	•	R gate								
bit 6 bit 5	1 = ANDI is c 0 = ANDI is n ACEN: AND	onnected to O ot connected t Gate C Input E	R gate o OR gate inable bit								
	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co	onnected to O ot connected t Gate C Input E nnected to AN	R gate o OR gate inable bit D gate								
bit 5	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co 0 = MCI is no	onnected to O lot connected t Gate C Input E nnected to AN it connected to	R gate o OR gate inable bit D gate AND gate								
	1 = ANDI is c 0 = ANDI is n ACEN: AND 1 = MCI is co 0 = MCI is no ACNEN: AND	onnected to O ot connected t Gate C Input E nnected to AN	R gate o OR gate inable bit D gate AND gate Inverted Enab								

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	0057EC	32									
	00AFEC	64									
	0157EC	128	_	_	_	_	_	_	_	—	_
	02AFEC	256									
	0557EC	512									
Reserved	0057EE	32									
	00AFEE	64									
	0157EE	128	_	_	_	_	_	_	_	_	_
	02AFEE	256									
	0557EE	512									
FICD	0057F0	32									
	00AFF0	64	-								
	0157F0	128		Reserved ⁽³⁾	_	JTAGEN	Reserved ⁽²⁾	Reserved ⁽³⁾	_	ICS<	:1.0>
	02AFF0	256				01110211					
	0557F0	512									
FPOR	0057F2	32									
	003712 00AFF2	64									
	0157F2	128		WDTV	VIN<1:0>	ALTI2C2	ALTI2C1	Reserved ⁽³⁾	_		
	013712 02AFF2	256		VUDIV		ALTIZOZ ALTIZOT RESErved	ALTIZOT TROSCIVOU	Received			_
	02AFF2 0557F2	512									
FWDT	0057F2	32									
	00AFF4	64					WOTODE		WDTDOO	WDTPOST<3:0>	
	0157F4	128	—	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTP05		
	02AFF4	256									
5000	0557F4	512							r		
FOSC	0057F6	32									
	00AFF6	64	-								
	0157F6	128	—	FCKS	SM<1:0>	IOL1WAY	-	-	OSCIOFNC	POSCN	ID<1:0>
	02AFF6	256									
	0557F6	512									
FOSCSEL	0057F8	32									
	00AFF8	64			(4)						
	0157F8	128	—	IESO	PWMLOCK ⁽¹⁾	—	-	-	F	NOSC<2:0>	
	02AFF8	256									
	0557F8	512									
FGS	0057FA	32									
	00AFFA	64									
	0157FA	128	—	—	—	—	—	—	—	GCP	GWRP
	02AFFA	256									
	0557FA	512									
Reserved	0057FC	32									
	00AFFC	64									
	0157FC	128	—	-	—	—	—	—	—	—	—
	02AFFC	256									
	0557FC	512									
Reserved	057FFE	32									
	00AFFE	64									
	0157FE	128	_	-	_	_	—	-	—	—	—
	02AFFE	256									
	0557FE	512									

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

30.1 DC Characteristics

			Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	41	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θJA	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

АС СНА	ARACTERIS	TICS		(unless otherw	vise stat	onditions: 3.0V ed) -40°C ≤ TA ≤ + -40°C ≤ TA ≤ +	-85°C foi	
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

TABLE 30-24	TIMER2 AND TIM	IER4 (TYPE B TIMER	R) EXTERNAL CLOCK TIMING REQUIREMENTS	j.
--------------------	----------------	--------------------	---------------------------------------	----

Note 1: These parameters are characterized, but are not tested in manufacturing.

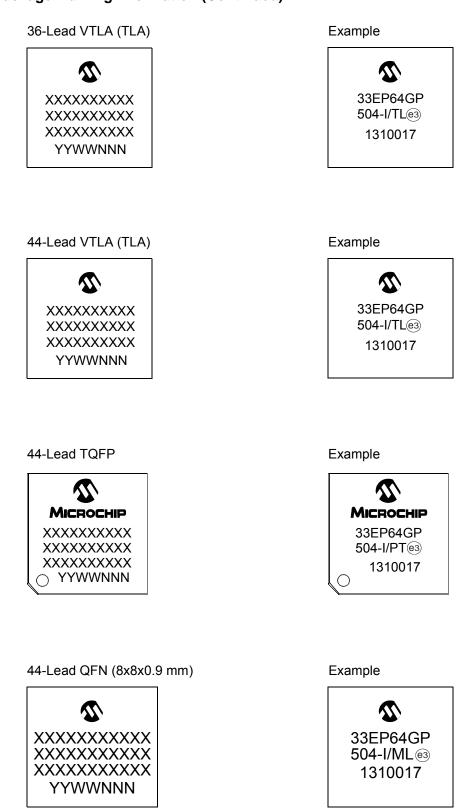
TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	/ise stat	,	⊦85°C fo	or Industrial	
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Тсү + 20	_	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, with prescaler	2 Tcy + 40	—	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

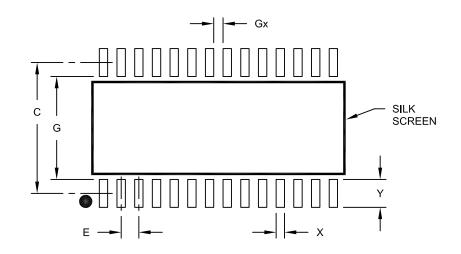
TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			perating erwise sta mperatur	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.			Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPI1 pins.

33.1 Package Marking Information (Continued)

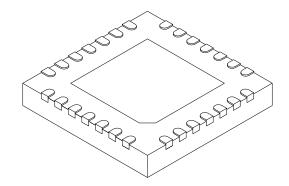
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N		S		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	Е	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	Х			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

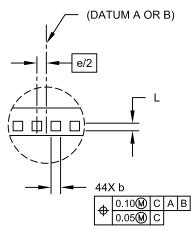
	MILLIMETERS			
Dimension	Dimension Limits			MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	3 0.20 REF		
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	К	0.20	-	-

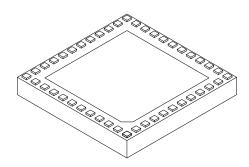
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


 $\label{eq:REF:Reference} \ensuremath{\mathsf{REF:}} \ensuremath{\mathsf{Reference}}\xspace \ensuremath{\mathsf{Dimension}}, \ensuremath{\mathsf{usually}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace, \ensuremath{\mathsf{for}}\xspace \ensuremath{\mathsf{oterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{rescale}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{\mathsf{toterance}}\xspace \ensuremath{\mathsf{vithout}}\xspace \ensuremath{$

Microchip Technology Drawing C04-124C Sheet 2 of 2

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	N	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Number of Pins per Side	ND		12		
Number of Pins per Side	NE		10		
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2

NOTES: