

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc206-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	- 0.													••				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	—	_	_	_	_	—	_	_	_	_	—	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS6	080C	_	—	—	—	_	_	—	_	—	_	—		_	_		PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—	—	_	_	—	_	—	_	—		_	_		_	0000
IFS9	0812		—	—	—		—	—	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	—	—	—	-	—	—	—	—	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	—	—	—	-	—	—	—	—	—	—	—	—	MI2C2IE	SI2C2IE	-	0000
IEC4	0828	_	_	CTMUIE	—	_	—	—	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	—	—	_	—	—	—	_	—	_	_	—	—	_	_	0000
IEC9	0832	_	_	—	—	_	—	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>	>		(OC1IP<2:0)>	_		IC1IP<2:0>			I	NT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>	>		(OC2IP<2:0)>	_		IC2IP<2:0>			D	MA0IP<2:0>		4444
IPC2	0844	_	ι	J1RXIP<2:	0>	_		SPI1IP<2:()>	_	SPI1EIP<2:0>			—		T3IP<2:0>		4444
IPC3	0846	_			—		C	MA1IP<2:	0>	_		AD1IP<2:0>			ι	1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0	>			CMIP<2:0	>	_	MI2C1IP<2:0>			SI2C1IP<2:			4444	
IPC5	084A	_			—			—	—	_	—	_	_	_	I	NT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>	>		(OC4IP<2:0)>	_		OC3IP<2:0>			D	MA2IP<2:0>		4444
IPC7	084E	_	I	U2TXIP<2:0	0>		ι	J2RXIP<2:	0>	_		INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	>		C	1RXIP<2:	0>	_		SPI2IP<2:0>	•		S	PI2EIP<2:0>		4444
IPC9	0852	_	—	—	—	_		IC4IP<2:0	>	_		IC3IP<2:0>		—	D	MA3IP<2:0>		0444
IPC11	0856	_	—	—	—	_	—	—	—	_	—	—	—	—	—	_	_	0000
IPC12	0858	_	—	—	—	_	N	112C2IP<2	:0>	_		SI2C2IP<2:0	>	—	—	_	_	0440
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0)>	_		U1EIP<2:0>		—	—	_	_	4440
IPC17	0862	—	_	—	—	_	0	1TXIP<2:	0>	_	—	—	—	—	_	_	_	0400
IPC19	0866	_	_	—	_	_	_	_	_	_		CTMUIP<2:0	>	—	—	_	_	0040
IPC35	0886	—		JTAGIP<2:()>	_		ICDIP<2:0	>	_	—	—	—	—	_	_	_	4400
IPC36	0888	—	F	PTG0IP<2:	0>	_	PT	GWDTIP<	2:0>	_	P1	GSTEPIP<2	:0>	—	_	—	—	4440
IPC37	088A	_	—	_	_	_	F	PTG3IP<2:0>		_	PTG2IP<2:0>		_	PTG1IP<2:0>			0444	

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00		—	—			TRISA10	TRISA9	TRISA8	TRISA7			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	0E02		—	_			RA10	RA9	RA8	RA7			RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04		—	—	-	-	LATA10	LATA9	LATA8	LATA7	_	-	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		—	—			CNIEA10	CNIEA9	CNIEA8	CNIEA7			CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	-	—	—	—	—	—	—	ANSB8	-	—	-	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	—	—	—	—	—	-	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	0E22	—	_	—	—	—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	—	—	—	—	—		LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	—	—	—	—	—	-	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	_	_	_	_	_	_	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	_	_	_	_	_	_	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	_	_	_	_	_	_		_		_	_	_	ANSC2	ANSC1	ANSC0	0007

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST	1 PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit 0
Legend:						<i>(</i> -)	
R = Readat	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 1E		on Interrupt b	.+				
	1 = Interrunte	will clear the	NOZEN bit				
	0 = Interrupts	s have no effect	t on the DOZE	EN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction S	Select bits ⁽¹⁾			
	111 = Fcy div	vided by 128					
	110 = Fcy div	vided by 64					
	101 = FCY div 100 = FCY div	/ided by 32					
	011 = FCY div	vided by 8 (defa	ault)				
	010 = FCY div	vided by 4					
	001 = FCY div	/ided by 2					
bit 11		e Mode Enable	. _{hit} (2,3)				
	1 = DOZER. DOZE < 2:0	0> field specifi	es the ratio be	tween the peri	pheral clocks a	nd the process	or clocks
	0 = Processor	r clock and per	ipheral clock r	atio is forced t	o 1:1		
bit 10-8	FRCDIV<2:0>	Internal Fast	RC Oscillator	Postscaler bit	S		
	111 = FRC di	vided by 256					
	110 = FRC di	vided by 64					
	100 = FRC d i	vided by 32 vided by 16					
	011 = FRC di	vided by 8					
	010 = FRC di	vided by 4					
	001 = FRC di 000 = FRC di	vided by 2 vided by 1 (de	fault)				
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divider	r Select bits (al	so denoted as '	N2', PLL posts	caler)
	11 = Output d	livided by 8	,	,		<i>,</i> ,	,
	10 = Reserve	d					
	01 = Output d	livided by 4 (de	etault)				
bit 5	Unimplement	ted: Read as '	0'				
5110	emplement		•				
Note 1:	The DOZE<2:0> bi DOZE<2:0> are igi	its can only be nored.	written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2:	This bit is cleared v	when the ROI I	oit is set and a	an interrupt occ	urs.		

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U1RXR<6:0	>		
bit 7							bit 0
-							

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		_	—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U2RXR<6:0>	>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

^{0000000 =} Input tied to Vss

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0				
bit 15							bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	FBP<5:0>: F	IFO Buffer Poir	nter bits								
	011111 = RE	331 buffer									
	•	50 bullet									
	•										
	•										
	000001 = TR	B1 buffer									
	000000 = TR	RB0 buffer									
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5-0	FNRB<5:0>:	FNRB<5:0>: FIFO Next Read Buffer Pointer bits									
	011111 = RB31 buffer										
	011110 = RE	330 buffer									
	•										
	•										
	•										
	000001 = TR	(B1 buffer									
	$000000 = \mathbf{IR}$										

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BP	<3:0>			F6BI	><3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP	<3:0>			F4BI	><3:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-12	F7BP<3:0>: 1111 = Filter	RX Buffer Masl	k for Filter 7 b	its ffer			

1110 = Filter hits received in RX Buffer 14
•
•
0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BF	P<3:0>			F10B	P<3:0>		
bit 15							bit 8	
R/W_0	R/M-0	R/M/-0	R/M-0	R/\\/_0	R/W/-0	R/M/-0	R/\/_0	
10,00-0	F9BP	>	10.00-0	F8BP<3:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter • • • 0001 = Filter 0000 = Filter	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	sk for Filter 1 n RX FIFO bu n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	1 bits iffer 4				
bit 11-8 bit 7-4	F10BP<3:0> F9BP<3:0>:	RX Buffer Ma	sk for Filter 1 k for Filter 9 k	0 bits (same val bits (same value	lues as bits<15 s as bits<15:1	5:12>) 2>)		
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits<15:12>)							

© 2011-2013 Microchip Technology Inc.

22.2 CTMU Control Registers

REGISTER	22-1. CTIVI			REGISTER	1					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	_	—	—	_				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			it	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	CTMUEN: C	TMU Enable bit								
	1 = Module i	s enabled								
	0 = Module i	s disabled								
bit 14	Unimplemer	ted: Read as '0'								
bit 13	CTMUSIDL:	CTMU Stop in Id	le Mode bit							
	1 = Discontinues module operation when device enters Idle mode									
	0 = Continues module operation in Idle mode									
bit 12	TGEN: Time	Generation Enab	ole bit							
	1 = Enables	edge delay gene	eration							
	0 = Disables	edge delay gene	eration							
bit 11	EDGEN: Edd	e Enable bit								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)

- 0 = Software is used to trigger edges (manual set of EDGxSTAT)
- bit 10 EDGSEQEN: Edge Sequence Enable bit
 - 1 = Edge 1 event must occur before Edge 2 event can occur
 - 0 = No edge sequence is needed
- bit 9 IDISSEN: Analog Current Source Control bit⁽¹⁾
 - 1 = Analog current source output is grounded
 - 0 = Analog current source output is not grounded
- bit 8 **CTTRIG:** ADC Trigger Control bit
 - 1 = CTMU triggers ADC start of conversion
 - 0 = CTMU does not trigger ADC start of conversion
- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS	4 ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
							=
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0C4C	S OC3CS	OC2CS	OC1CS	OC41SS	OC31SS	OC21SS	OCTISS
DIT 7							Dit U
l egend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit. read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 14	ADCIS3: Sa	mple Trigger P	IGO14 for AL	DC bit	ovecuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	nand is execute	ed	
bit 13	ADCTS2: Sa	mple Trigger P	TGO13 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 12	ADCIS1: Sa	mple Trigger P	IGO12 for AL	DC bit	overuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	mand is execute	ed	
bit 11	IC4TSS: Trig	ger/Synchroniz	ation Source	for IC4 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	s executed	
1.11.4.0	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ted
bit 10		ger/Synchroniz	ation Source	for IC3 bit	act command is	overuted	
	0 = Does not	generate Trigo	jer/Synchroniz	ation when the	e broadcast con	mand is executed	ted
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source	for IC2 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	sexecuted	
	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ted
bit 8	IC1TSS: Trig	ger/Synchroniz	ation Source	for IC1 bit			
	0 = Does not	generate Trigo	er/Synchroniz	ation when the	e broadcast con	mand is executed	ted
bit 7	OC4CS: Cloc	ck Source for C	C4 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted	
bit 6	OC3CS: Cloc	ck Source for C	C3 bit		-l :		
	⊥ = Generate 0 = Does not	aenerate clock	onen the broad	he broadcast c	u is executed command is exe	cuted	
bit 5	OC2CS: Cloc	ck Source for C	C2 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	cuted	
Note 1:	This register is rea PTGSTRT = 1).	ad-only when th	ne PTG modul	e is executing	Step commands	s (PTGEN = 1 a	and
2:	This register is onl	v used with the	PTGCTRL O	PTION = 1111	Step command	L	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

bit 3-0	Step Command	OPTION<3:0>	Option Description					
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾					
	or	0001	PWM master time base synchronization output. ⁽³⁾					
	P.I.GWLO(''	0010	PWM1 interrupt. ⁽³⁾					
		0011	PWM2 interrupt. ⁽³⁾					
		0100	PWM3 interrupt. ⁽³⁾					
		0101	Reserved.					
		0110	Reserved.					
		0111	OC1 Trigger event.					
		1000	OC2 Trigger event.					
		1001	IC1 Trigger event.					
		1010	CMP1 Trigger event.					
		1011	CMP2 Trigger event. CMP3 Trigger event.					
		1100						
		1101	CMP4 Trigger event.					
		1110	ADC conversion done interrupt.					
		1111	INT2 external interrupt.					
	PTGIRQ(1)	0000	Generate PTG Interrupt 0.					
		0001	Generate PTG Interrupt 1.					
		0010	Generate PTG Interrupt 2.					
		0011	Generate PTG Interrupt 3.					
		0100	Reserved.					
		•	•					
		•	•					
		•	•					
	(2)	1111	Reserved.					
	PTGTRIG ⁽²⁾	00000	PTGO0.					
		00001	PTGO1.					
		•	•					
		•	•					
		•						
		11110	PTGO30.					
		11111	PTGO31.					

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7							bit 0				
Legend											
R = Readable	e hit	W = Writable	hit	= Inimple	mented hit read	1 as '0'					
n = Value at		'1' = Rit is set		(0) = 0	eared	x = Bit is unknown					
	1010	1 - Dit 13 3C			carca		nown				
bit 15	HLMS: Hiah	or Low-Level	/asking Select	bits							
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	rator signal fro	m propagating				
	0 = The mas	king (blanking)	function will pre	event any asse	erted ('1') compa	rator signal fro	m propagating				
bit 14	Unimpleme	nted: Read as	'0'								
bit 13	OCEN: OR (Gate C Input Er	nable bit								
	1 = MCI is co	1 = MCI is connected to OR gate									
	0 = MCI is no	ot connected to	OR gate								
bit 12	OCNEN: OR	Gate C Input	nverted Enable	e bit							
	1 = Inverted	1 = Inverted MCI is connected to OR gate									
hit 11		Sate B Input Fr	heeled to on g	juic							
bit II	1 = MBI is co	onnected to OR	aate								
	0 = MBI is no	ot connected to	OR gate								
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit							
	1 = Inverted	1 = Inverted MBI is connected to OR gate									
	0 = Inverted MBI is not connected to OR gate										
bit 9	OAEN: OR (Gate A Input Er	nable bit								
	1 = MAI is connected to OR gate										
hit 8	0 - MALIS HULCOIMECTED TO OR GATE										
DILO	1 = Inverted	UANEN: OR Gate A Input Inverted Enable bit									
	0 = Inverted MAI is not connected to OR gate										
bit 7	NAGS: AND	NAGS: AND Gate Output Inverted Enable bit									
	1 = Inverted ANDI is connected to OR gate										
	0 = Inverted	0 = Inverted ANDI is not connected to OR gate									
bit 6		PAGS: AND Gate Output Enable bit									
	1 = ANDI is 0 0 = ANDI is r	0 = ANDI is not connected to OR gate									
bit 5	ACEN: AND	Gate C Input E	Enable bit								
	1 = MCI is co	onnected to AN	D gate								
	0 = MCI is no	ot connected to	AND gate								
bit 4	ACNEN: AN	D Gate C Input	Inverted Enab	ole bit							
	1 = Inverted	MCI is connect	ed to AND gat	e,							
	0 = Inverted	MCI is not con	nected to AND	gate							

30.1 DC Characteristics

|--|

Characteristic			Maximum MIPS		
	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3		°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θја	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	Lesserof FP or 11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	-	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	-	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	-	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	—	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensio	on Limits	MIN NOM MAX				
Number of Leads	Ν	64				
Lead Pitch	е	0.50 BSC				
Overall Height	А	_	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	φ	0° 3.5° 7°				
Overall Width	Е	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11° 12° 13°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.