

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP				_	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—				INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 15	GIE: Global	Interrupt Enable	e bit				
	1 = Interrupt	s and associate	d IE bits are	enabled			
		s are disabled, I	•	still enabled			
bit 14	DISI: DISI	nstruction Statu	s bit				
		struction is active struction is not a	-				
bit 13	SWTRAP: S	Software Trap St	atus bit				
		e trap is enabled e trap is disabled					
bit 12-3	Unimpleme	nted: Read as '	0'				
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit		
	1 = Interrupt on negative edge 0 = Interrupt on positive edge						
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit						
	1 = Interrupt on negative edge 0 = Interrupt on positive edge						
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit		
	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your brouger.
	this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15						•	bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		_		_	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 14	0 = Reference	e oscillator outp e oscillator outp i ted: Read as '	out is disabled		.K pin ⁽²⁾		
bit 13	Unimplemented: Read as '0' ROSSLP: Reference Oscillator Run in Sleep bit						
	1 = Reference	e oscillator out e oscillator out	out continues	to run in Sleep			
bit 12	1 = Oscillator	erence Oscillato crystal is used lock is used as	as the refere	nce clock			
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 1000 = Refer 1011 = Refer 1001 = Refer 1000 = Refer 0111 = Refer 0111 = Refer 0101 = Refer 0100 = Refer 0101 = Refer 0011 = Refer 0011 = Refer 0011 = Refer	Reference Os rence clock divi rence clock divi	ded by 32,763 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	8			
	0000 = Refer	ence clock	-				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

NOTES:

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
CHPCLKEN	—	—	—	—	—	CHOPC	LK<9:8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CHOPC	LK<7:0>				
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15 bit 14-10 bit 9-0	1 = Chop clos 0 = Chop clos Unimplemen CHOPCLK<9 The frequence	Enable Chop ck generator is ck generator is ted: Read as ' 9:0>: Chop Clo y of the chop c ncy = (FP/PCL)	enabled disabled 0' ck Divider bits lock signal is g	given by the fo	ollowing expressi + 1)	on:		

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
—	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0				
bit 15							bit				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	S SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	Unimplemen	nted: Read as '	0'								
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit							
		N bus line filter									
		line filter is not		e-up							
bit 13-11	-	nted: Read as '									
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits										
	111 = Length is 8 x TQ										
	•										
	•										
	000 = Length	n is 1 x To									
bit 7	-		nt 2 Time Sele	ct bit							
	SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable										
		n of SEG1PHx I	bits or Informa	tion Processin	g Time (IPT), w	hichever is gre	ater				
bit 6	SAM: Sample	e of the CAN B	us Line bit								
		s sampled threes sampled once									
bit 5-3	SEG1PH<2:0	0>: Phase Segr	nent 1 bits								
	111 = Length is 8 x TQ										
	•										
	•										
	•										
	000 = Length										
bit 2-0		>: Propagation	Time Segmen	t bits							
	111 = Length	IIS8XIQ									
	•										
	•										

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet. refer to "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows the ADC module to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode
- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable conversion Trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

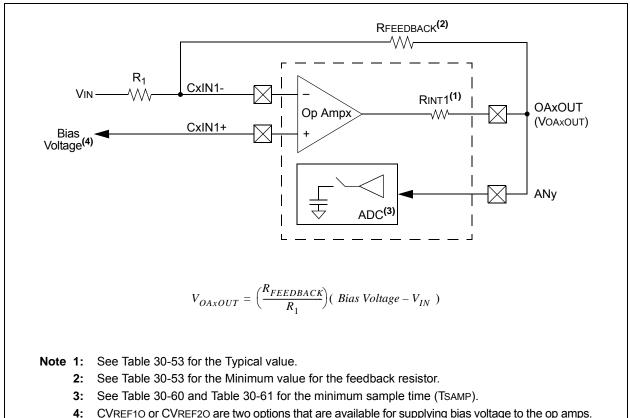
Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.


25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

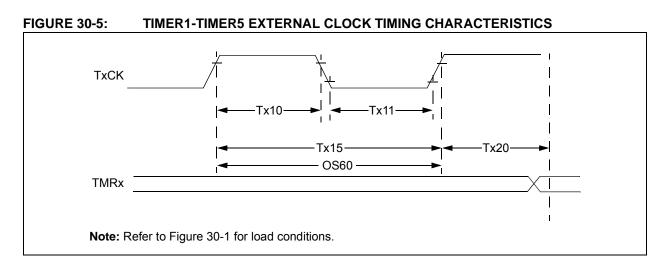


FIGURE 25-7: OP AMP CONFIGURATION B

Field	Description			
Wm,Wn	Dividend, Divisor working register pair (direct addressing)			
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}			
Wnd	One of 16 destination working registers ∈ {W0W15}			
Wns	One of 16 source working registers ∈ {W0W15}			
WREG W0 (working register used in file register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}			
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}			
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}			
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}			

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED))
	······································	,

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

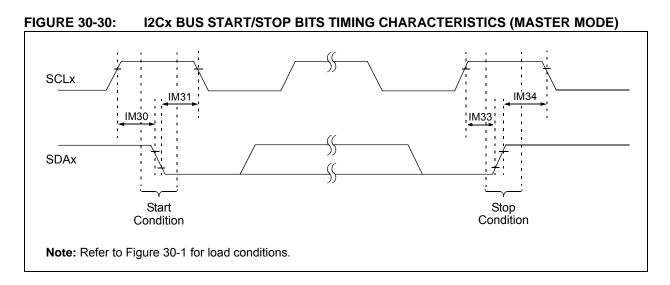
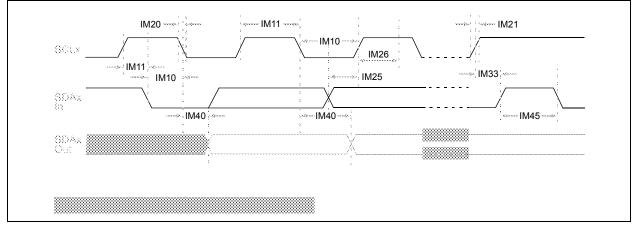


TABLE 30-23: TIME	1 EXTERNAL CLOCK TIMING REQUI	REMENTS ⁽¹⁾
-------------------	-------------------------------	------------------------


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	_	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min Typ Max U			Units	Conditions			
ADC Accuracy (12-Bit Mode) ⁽¹⁾										
HAD20a	Nr	Resolution ⁽³⁾	12	2 Data B	its	bits				
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾				
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz				

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

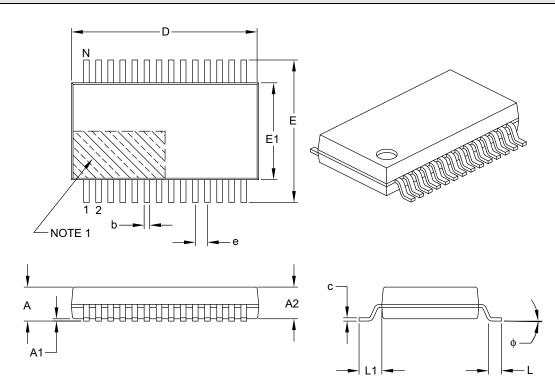
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min Typ Max Units		Units	Conditions	
		ADC A	ccuracy	(10-Bit I	Mode) ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits	
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22b	DNL	Differential Nonlinearity	-0.25	-	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
		Dynamic P	erforma	nce (10-	Bit Mode	e) ⁽²⁾	
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

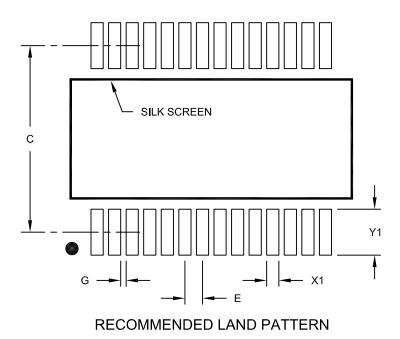
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dime	Dimension Limits			MAX		
Number of Pins	N	28				
Pitch	е	0.65 BSC				
Overall Height	A	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	ф	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimensior	Dimension Limits			MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12