

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep64mc206t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

TABLE	4-Z:	CPU		EGISTEI	RIMAP		Z4EPX		C20X D	EVICES	ONLT							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM<1	5:0>								0000
PCL	002E			•			•	P	CL<15:1>								—	0000
PCH	0030	—	—	—	—	—	—		—	—				PCH<6:0>				0000
DSRPAG	0032	—	—	—	—	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	—	—	—	—	—	—	—				DS	SWPAG<8:0)>				0001
RCOUNT	0036			•			•		RCOUNT<	15:0>								0000
SR	0042	—	—		—	_	—	_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	—	—	—	—	_	—	—	—	—	—	IPL3	SFA	—	—	0020
DISICNT	0052	—	-							DISICNT	<13:0>							0000
TBLPAG	0054	—	—	—	—	—	—	—	—				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	15:0>								0000

D I -4.0 - -

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

11-0	R-0	R-0	R-0	U-O	R/W-v	R/W-v	R/W-v
	COSC2	COSC1	COSCO	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾		—	OSWEN
bit 7							bit 0
			(
Legend:	- h l - h :4	y = Value set	from Configur	ation bits on P	'OR	(0)	
		vv = vvritable	DIL	0 = 0	mented bit, read	as u	
-n = value	alPOR	I = BILIS Set		0 = Bit is cle	ared		IOWN
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	')		
	111 = Fast R(C Oscillator (F	RC) with Divid	le-by-n	,		
	110 = Fast R	C Oscillator (F	RC) with Divid	le-by-16			
	101 = Low-Po	ower RC Oscill	ator (LPRC)				
	011 = Primary	v Oscillator (X	r, HS, EC) wit	h PLL			
	010 = Primary	y Oscillator (X	r, HS, EC)				
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid RC)	le-by-N and PL	L (FRCPLL)		
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)			
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n			
	110 = Fast R	C Oscillator (F	RC) with Divic	le-by-16			
	101 - Low-PC 100 = Reserv	ed					
	011 = Primary	y Oscillator (X	r, HS, EC) wit	h PLL			
	010 = Primary	y Oscillator (X	r, HS, EC)				
	001 = Fast R0 000 = Fast R0	C Oscillator (FI	RC) with Divid RC)	Ie-by-N and PL	L (FRCPLL)		
bit 7	CLKLOCK: C	lock Lock Ena	ble bit				
	1 = If (FCKS	M0 = 1), then c	lock and PLL	configurations	are locked; if (F	CKSM0 = 0), t	hen clock and
	0 = Clock and	d PLL selection	ns are not lock	ked, configurat	ions may be mo	dified	
bit 6	IOLOCK: I/O	Lock Enable b	it				
	1 = I/O lock is	active					
	0 = I/O lock is	not active	/ I I \				
bit 5	LOCK: PLL L	ock Status bit	(read-only)	ant un tincaria	a atiafia d		
	 1 = indicates 0 = Indicates 	that PLL is in	t of lock, start	-up timer is -up timer is in	progress or PLL	is disabled	
Note 1:	Writes to this regis	ter require an e erence Manual	unlock sequer " (available fro	nce. Refer to " om the Microch	Oscillator" (DS ip web site) for	70580) in the <i>"</i> o details.	dsPIC33/
2:	Direct clock switch This applies to cloc	es between an ck switches in o	y primary osci either direction	llator mode wit	h PLL and FRC ances, the appli	PLL mode are r cation must sw	not permitted. itch to FRC
	moue as a transitio	nai Clock Sour		IE IWO PLL IIIO	u c s.		

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	x
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7			bit 0
Legend:	HS = Hardware Settal	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾

SYNCSEL0⁽⁴⁾

		P	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	—	_	_		—
bit 15	•	•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13 bit 12-5 bit 4-0	DMABS<2:0> 111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<4:0>: FI 11111 = Rea 11110 = Rea	>: DMA Buffer S red fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM ted: Read as for IFO Area Starts d Buffer RB31 d Buffer RB30	Size bits)' s with Buffer b	its			

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

30.1 DC Characteristics

|--|

			Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
_	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD		Pint + Pi/c)	W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θја	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0		°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8		°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θја	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾		—	0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
DO20A	Voн1	Output High Voltage	1.5 ⁽¹⁾	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		4x Source Driver Pinst	2.0 ⁽¹⁾	_			$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0(1)	—	—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage	1.5 ⁽¹⁾	_		V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		8x Source Driver Pins	2.0 ⁽¹⁾	—	_		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			3.0(1)	—	—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V						
	(unless otherwise stated)						
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
	Operating voltage VDD range as described in Section 30.1 "DC						
	Characteristics".						

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In I ² C™ mode

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	—			ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	TFD	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20		—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHA	AC CHARACTERISTICS			peratin erwise emperat	g Condition stated) ure -40°C : -40°C :	s (see ≤ Ta ≤ + ≤ Ta ≤ +	Note 2): 3.0V to 3.6V 85°C for Industrial 125°C for Extended
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				
VR310	TSET	Settling Time	_	1	10	μS	(Note 1)

Note 1: Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			Standard O (unless oth Operating te	perating erwise st emperatur	Conditions (sated) $e -40^{\circ}C \le T$ $-40^{\circ}C \le T$	see Note A ≤ +85°(A ≤ +125	1): 3.0V to 3.6V C for Industrial °C for Extended
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Conditions				Conditions
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy ⁽²⁾	—	±25	—	mV	CVRSRC = 3.3V
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V	
VRD314	CVROUT	Buffer Output Resistance ⁽²⁾	_	1.5k	_	Ω	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

AC CHARACTERISTICS			Standar (unless Operatir	d Opera otherwi ng tempe	ting Cor se stated rature	ditions: 1) ⁽¹⁾ -40°C ≤ [°] -40°C ≤ [°]	: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions
		ADC /	Accuracy	/ (12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-5.5	_	5.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1		1	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$
			-1		1	LSb	+85°C < TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10		10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10		10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5		5	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C$ (Note 2)
			-5		5	LSb	$+85^{\circ}C < TA \le +125^{\circ}C$ (Note 2)
AD25a	—	Monotonicity	_			—	Guaranteed
		Dynamic	Performa	ance (12	Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68	_	dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾		80	_	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	_	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1): PIC24EP512GP202 PIC24EP512GP204 PIC24EP512GP206 dsPIC33EP512GP502 dsPIC33EP512GP506 The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2): PIC24EP512MC202 PIC24EP512MC204 PIC24EP512MC206 dsPIC33EP512MC202 dsPIC33EP512MC202 dsPIC33EP512MC204 dsPIC33EP512MC206 dsPIC33EP512MC206 dsPIC33EP512MC206 dsPIC33EP512MC506
Section 4.0 "Momony	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-4). Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-11).
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".
Section 27.0 "Special Features"	 The following modifications were made to the Configuration Byte Register Map (see Table 27-1): Added the column Device Memory Size (Kbytes) Removed Notes 1 through 4 Added addresses for the new 512-Kbyte devices
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).
	Updated the Minimum value for Parameter CM34 (see Table 30-53).
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).

DMAxSTAH (DMA Channel x	
Start Address A, High)	144
DMAxSTAL (DMA Channel x	
Start Address A, Low)	144
DMAxSTBH (DMA Channel x	
Start Address B, High)	145
DMAxSTBL (DMA Channel x	
Start Address B, Low)	145
DSADRH (DMA Most Recent RAM	4 4 7
High Address)	147
DSADRL (DMA MOSt Recent RAM	1 4 7
DTPy (PWMy Dead-Time)	147 238
ECL CONV (PWMx Eault Current-Limit Control)	2/3
I2CYCON (I2Cy Control)	276
I2CxMSK (I2Cx Slave Mode Address Mask)	280
I2CxSTAT (I2Cx Status)	278
ICxCON1 (Input Capture x Control 1)	215
ICxCON2 (Input Capture x Control 2)	216
INDX1CNTH (Index Counter 1 High Word)	259
INDX1CNTL (Index Counter 1 Low Word)	259
INDX1HLD (Index Counter 1 Hold)	260
INT1HLDH (Interval 1 Timer Hold High Word)	264
INT1HLDL (Interval 1 Timer Hold Low Word)	264
INT1TMRH (Interval 1 Timer High Word)	263
INT1TMRL (Interval 1 Timer Low Word)	263
INTCON1 (Interrupt Control 1)	134
INTCON2 (Interrupt Control 2)	136
INTCON2 (Interrupt Control 3)	137
INTCON4 (Interrupt Control 4)	137
INTTREG (Interrupt Control and Status)	138
IOCONx (PWMx I/O Control)	240
LEBCONX (PWMx Leading-Edge	
Blanking Control)	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay)	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High)	245 246 234 122
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMADRL (Nonvolatile Memory (NV/M) Control)	245 246 234 122 122 121
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory (NVM) Control) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory (Key)	245 246 234 122 122 121 122
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCXCON1 (Output Compare x Control 1)	245 246 234 122 122 121 122 122 122
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	245 234 122 122 121 122 221 223
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OSCCON2 (Output Compare x Control 2) OSCCON (Oscillator Control)	245 246 234 122 122 121 122 221 223 156
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning)	245 246 234 122 122 121 122 221 223 156 161
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle)	245 246 234 122 121 122 221 223 156 161 237
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift)	245 246 234 122 121 121 221 223 156 161 237 237
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor)	245 246 234 122 121 121 221 223 161 237 237 160
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1)	245 246 234 122 121 121 223 156 237 237 160 166
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 169
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 121 121 223 126 161 237 237 160 166 168 169 169 170
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 170 171
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 169 170 171 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 169 170 171 258 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 221 223 161 237 160 166 168 169 169 169 169 170 171 258 258 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 237 160 166 168 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 160 166 168 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 221 223 160 161 237 160 166 168 169 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 126 161 237 160 166 168 169 169 169 169 170 171 258 258 258 230 232 232
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 160 166 168 169 169 169 170 171 258 258 258 230 232 348 343 246
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 221 223 156 161 237 160 166 168 169 169 169 170 171 258 258 258 230 232 348 343 343
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 160 166 168 169 169 169 169 170 171 258 258 258 230 232 348 343 347 347 347 342

PTGCST (PTG Control/Status)	340
PTGHOLD (PTG Hold)	347
PTGL0 (PTG Literal 0)	348
PTGQPTR (PTG Step Queue Pointer)	349
PTGQUEx (PTG Step Queue x)	349
PTGSDLIM (PTG Step Delay Limit)	346
PTGT0LIM (PTG Timer0 Limit)	345
PTGT1LIM (PTG Timer1 Limit)	345
PTPER (PWMx Primary Master Time	
Base Period)	233
PWMCONx (PWMx Control)	235
QEI1CON (QEI1 Control)	252
QEI1GECH (QEI1 Greater Than or Equal	
Compare High Word)	262
QEI1GECL (QEI1 Greater Than or Equal	
Compare Low Word)	262
QEI1ICH (QEI1 Initialization/Capture	
High Word)	260
QEITICL (QEIT Initialization/Capture	
	260
QEI1IOC (QEI1 I/O Control)	254
QEITLECH (QEIT Less Than or Equal	004
Compare High Word)	261
QEITLECL (QEIT Less Than or Equal	261
	201
QEITSTAT (QEIT Status)	200
REENCON (Reset Control)	162
REI OCON (Reference Oscillator Control)	102
PDINR1 (Peripheral Pin Select Input 1)	18/
RPINR1 (Perinheral Pin Select Input 1)	187
RPINR12 (Perinheral Pin Select Input 12)	188
RPINR14 (Perinheral Pin Select Input 14)	180
RPINR15 (Peripheral Pin Select Input 15)	190
RPINR18 (Peripheral Pin Select Input 18)	191
RPINR19 (Peripheral Pin Select Input 19)	191
RPINR22 (Peripheral Pin Select Input 22)	192
RPINR23 (Peripheral Pin Select Input 23)	193
RPINR26 (Peripheral Pin Select Input 26)	193
RPINR3 (Peripheral Pin Select Input 3)	184
RPINR37 (Peripheral Pin Select Input 37)	194
RPINR38 (Peripheral Pin Select Input 38)	195
RPINR39 (Peripheral Pin Select Input 39)	196
RPINR7 (Peripheral Pin Select Input 7)	185
RPINR8 (Peripheral Pin Select Input 8)	186
RPOR0 (Peripheral Pin Select Output 0)	197
RPOR1 (Peripheral Pin Select Output 1)	197
RPOR2 (Peripheral Pin Select Output 2)	198
RPOR3 (Peripheral Pin Select Output 3)	198
RPOR4 (Peripheral Pin Select Output 4)	199
RPOR5 (Peripheral Pin Select Output 5)	199
RPOR6 (Peripheral Pin Select Output 6)	200
RPOR7 (Peripheral Pin Select Output 7)	200
RPOR8 (Peripheral Pin Select Output 8)	201
RPOR9 (Peripheral Pin Select Output 9)	201
SEVTCMP (PWMx Primary Special	
Event Compare)	233
SPIxCON1 (SPIx Control 1)	270
SPIXCON2 (SPIX Control 2)	272
SPIXSTAT (SPIX Status and Control)	268
SR (CPU STATUS)	132
TROON (Timer1 Control)	205
TRECONX (PWMX Trigger Control)	239
TRIGX (PWWX Primary Trigger Compare Value)	242
	210