E. Renesas Electronics America Inc - M30281FATHP#U3AAD1 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30281fathp-u3aad1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Quick Reference to Pages Classified by Address

			i				1
Address	Register	Symbol	Page	Address	Register	Symbol	Page
018016				024016			
018116				024116			
018216				024216			
018316				024316			
018416				024416			
018516				024516			
018616				024616			
018716				024716			
to				024816			
01AF16				024916			
01B016				024A16			
01B116				024C16			
01B216				024D16			
01B316	Flash memory control register 4 (Note 2)	FMR4	304	024E16			
01B416				024F16			
01B516	Flash memory control register 1 (Note 2)	FMR1	303	025016			
01B616				025116			
01B7 ₁₆	Flash memory control register 0 (Note 2)	FMR0	303	025216			
01B816				025316			
01B916				025416			
01BA16				025516			
01BB16				025616			
01BC16				025716			
01BD16				025816			
to				025916			
019F16				025A16	Three-phase protect control register	TPRC	128
020016				025B16	<u> </u>		
020116				025C16	On-chip oscillator control register	ROCR	39
020216				025D16	Pin assignment control register	PACR	166, 289
020316				025E16	Peripheral clock select register	PCLKR	41
020416				025F16	Low-power consumption control register 1	LPCC1	359
020516				026016		2. 00.	
020616				026116			
020716				026216			
020816				026316			
020916				026416			
020A16				026516			
020B16				026616			
020C16				026716			
020D16				026816			
020E16				026916			
020F16				026A16			
021016	Low-power consumption control register 0	LPCC0	359	026B16			
021116		21 000	000	026C16			
021216				026D16			
021316				to			
021016				02DF16			
021516				02DF16			
021616					I ² C0 data shift register	S00	247
021716				02E116			
021816					I ² C0 address register	S0D0	246
021016				02E316	I ² C0 control register 0	S1D0	240
021010 021A16				02E416	I ² C0 clock control register	S20	240
021A16					I ² C0 start/stop condition control register		252
021B16 021C16					I ² C0 control register 1	S3D0	252
021C16					I ² C0 control register 2	S4D0	250
021D16 021E16				02E716	I ² C0 status register	S4D0 S10	231
021E16 021F16		<u> </u>		02E816 02E916		510	249
021F16				02E916 02EA16			
021016				02EA16 02EB16			
to 02FD16				to 02FE16			
02FE16				02FE16			
02FF16				02FF16			

Note 1: The blank areas are reserved and cannot be accessed by users. Note 2: This register is included in the flash memory version.

	b4 b3	b2 t	b1 b0	Symbo PM2		After Reset XXX000002	
				Bit Symbol	Bit Name	Function	RV
				PM20	Specifying wait when accessing SFR during PLL operation ⁽²⁾	0: 2 waits 1: 1 wait	RV
				PM21	System clock protective $bit^{(3,4)}$	0: Clock is protected by PRCR register 1: Clock modification disabled	RV
				PM22	WDT count source protective bit ^(3,5)	0: CPU clock is used for the watchdog timer count source 1: On-chip oscillator clock is used for the watchdog timer count source	RV
				(b3)	Reserved bit	Set to "0"	RV
				PM24	P85/NMI configuration bit ^(6,7)	0: P85 function (NMI disable) 1: NMI function	RV
1. Write 2. The	PM20 b	bit bec	ome e	effective when	Nothing is assigned. When writ When read,its content is indete PRC1 bit in the PRCR register to PLC07 bit in the PLC0 register i	L e, set to"0". rminate 0 "1" (write enable). is set to "1" (PLL on). Change the PI	
2. The whe 3. Onc 4. Writi 5. Setti - Th Pl - Th so - Th	PM20 t en the P the this b ing to the CM02 the CM05 the CM07 the CM07 the CM10 the CM10 the CM10 the CM10 the CM20 the All bits here the ing the the on-cl LL clock the on-cl burce.	bit bec LC07 it is see follo bit in the bit in the bit in the bit in the PM21 PM22 hip ose (syse hip ose	come e bit is set to "1 owing ne CM ne CM ne CM ne CM ne CM pe CM pe CM pe CM bit is bit to cillator tem cl	er setting the effective when set to "0" (PLL ", it cannot be bits has no ef 10 register 10 register (CF 11 register (CF 12 register (CF 12 register (CPL set to "1", do "1" results in 1 r continues os ock of count set r starts oscilla	When read,its content is indete PRC1 bit in the PRCR register to PLC07 bit in the PLC0 register i off). Set the PM20 bit to "0" (2 v e set to "0" by program. fect when the PM21 bit is set to " ain clock is not halted) PU clock source does not change prode is not entered) PU clock source does not change cillation stop, re-oscillation detec frequency synthesizer setting do not execute the WAIT instruction the following conditions: cillating even if the CM21 bit in the source selected by the CM21 bit ting, and the on-chip oscillator clo	e, set to"0". rminate 0 "1" (write enable). is set to "1" (PLL on). Change the PI vaits) when PLL clock > 16 MHz. (1": (1": (1) (1) (1) (1) (1) (1) (1) (1)) lock (

Figure 6.2 PM2 Register

The operation of saving registers carried out in the interrupt sequence is dependent on whether the $SP^{(1)}$, at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ⁽¹⁾ is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. **Figure 9.8** shows the operation of the saving registers.

NOTE:

1. When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

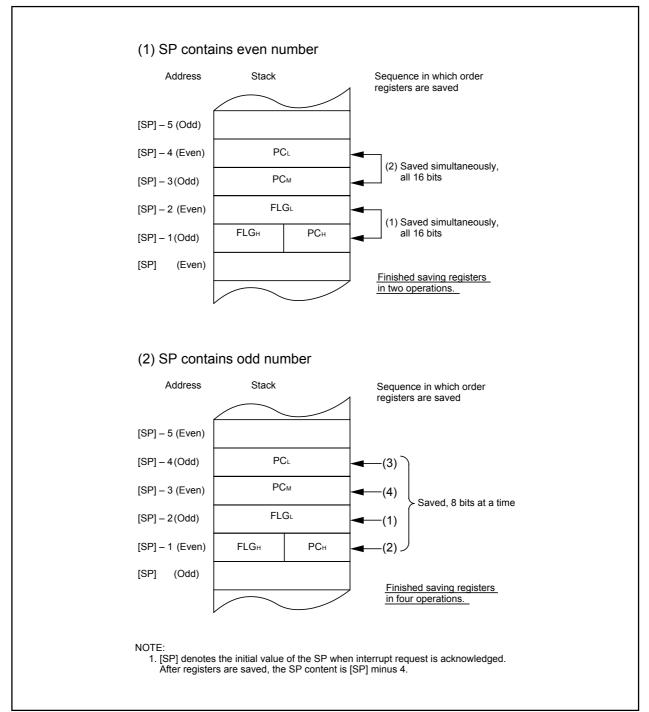


Figure 9.8 Operation of Saving Register

9.9 Address Match Interrupt

An address match interrupt request is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0 to 1). Set the start address of any instruction in the RMADi register. Use bits AIER1 and AIER0 in the AIER register to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed (refer to "**Saving Registers**").

(The value of the PC that is saved to the stack area is not the correct return address.) Therefore, follow one of the methods described below to return from the address match interrupt.

• Rewrite the content of the stack and then use the REIT instruction to return.

• Restore the stack to its previous state before the interrupt request was accepted by using the POP or similar other instruction and then use a jump instruction to return.

Table 9.6 shows the value of the PC that is saved to the stack area when an address match interrupt request is accepted.

Figure 9.13 shows registers AIER, RMAD0, and RMAD1.

Table 9.6 Value of the PC that is saved to the stack area when an address match interrupt request is accepted.

	Instruction a	at the addre	ss indicated by the RN	/IADi regist	er	Value of the PC that is saved to the stack area
2-byte op-co 1-byte op-co ADD.B:S OR.B:S STNZ.B CMP.B:S JMPS MOV.B:S	de instruction de instructions w #IMM8,dest #IMM8,dest #IMM8,dest #IMM8 #IMM8	SUB.B:S MOV.B:S STZX.B PUSHM JSRS	#IMM8,dest #IMM8,dest #IMM81,#IMM82,dest src #IMM8	AND.B:S STZ.B POPM de	#IMM8,dest #IMM8,dest st	The address indicated by the RMADi register +2
Instructions ot	her than the abo	ve				The address indicated by the RMADi register +1

Value of the PC that is saved to the stack area : Refer to "Saving Registers".

Op-code is an abbreviation of Operation Code. It is a portion of instruction code.

Refer to Chapter 4 Instruction Code/Number of Cycles in M16C/60, M16C/20 Series Software Manual. Op-code is shown as a bold-framed figure directly below the Syntax.

Table 9.7 Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1

7 66 b5 b4 b3 b2 b1 b0 0 1 0 1 0 1 0	ter Symbol TA1MR TA2MR TA4MR Bit Symbol	Address 039716 039816 039A16 Bit Name	After Reset 0016 0016 0016 Function	RW
	TMOD0		Set to 102 (one-shot timer mode) for the	RW
	TMOD0	Operation mode select bit	three-phase motor control timer function	RW
	MR0	Pulse output function select bit	Set to 0 for the three-phase motor control timer function	RW
	MR1	External trigger select bit	No effect for the three-phase motor control timer function	RW
۱ <u>ـــــ</u>	MR2	Trigger select bit	Set to 1 (selected by event/trigger select register) for the three-phase motor control timer function	RW
	MR3	Set to 0 for the three-pha	se motor control timer function	RW
	TCK0	Count source select bit	b7 b6 0 0 : f1 or f2 0 1 : f8	RW
l				
	TCK1		1 0 : f32 1 1 : fC32	RW
Timer B2 Mode Regi <u>b7 b6 b5 b4 b3 b2 b1 b0</u> 0 0 0	ster Symbol TB2MR	Address 039D16	1 1 : fc32 After Reset 00XX00002	
b7 b6 b5 b4 b3 b2 b1 b0	Ster Symbol TB2MR Bit Symbol		1 1 : fc32 After Reset	RW
b7 b6 b5 b4 b3 b2 b1 b0	ster Symbol TB2MR Bit Symbol TMOD0	039D16	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three-	RW
b7 b6 b5 b4 b3 b2 b1 b0	Ster Symbol TB2MR Bit Symbol TMOD0 TMOD1	039D16 Bit Name	1 1 : fc32 After Reset 00XX00002 Function	RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	Ster Symbol TB2MR Bit Symbol TMOD0 TMOD1 MR0	039D16 Bit Name Operation mode select bit No effect for the three-pha	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three-phase motor control timer function ase motor control timer function.	RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	Ster Symbol TB2MR Bit Symbol TMOD0 TMOD1	039D16 Bit Name Operation mode select bit No effect for the three-pha	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three-phase motor control timer function	RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	Ster Symbol TB2MR Bit Symbol TMOD0 TMOD1 MR0	039D16 Bit Name Operation mode select bit No effect for the three-pha If necessary, set to 0. Wh	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three-phase motor control timer function ase motor control timer function.	RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	ster Symbol TB2MR Bit Symbol TMOD0 TMOD1 MR0 MR1	039D16 Bit Name Operation mode select bit No effect for the three-pha If necessary, set to 0. Wh Set to 0 for the three-phas	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three- phase motor control timer function ase motor control timer function. then read, the contents are undefined e motor control timer function e motor control timer function e motor control timer function e motor control timer function, write 0. undefined	RW RW RW RW RW RW RW RW RW RW
b7 b6 b5 b4 b3 b2 b1 b0	ster Symbol TB2MR Bit Symbol TMOD0 TMOD1 MR0 MR1 MR2	039D16 Bit Name Operation mode select bit No effect for the three-pha If necessary, set to 0. Wh Set to 0 for the three-phas When write in three-phase	1 1 : fc32 After Reset 00XX00002 Function Set to 002 (timer mode) for the three-phase motor control timer function ase motor control timer function. ien read, the contents are undefined e motor control timer function e motor control timer function e motor control timer function	RW RW RW RW RW

Figure 12.32 TA1MR, TA2MR, TA4MR, and TB2MR Registers

Table 14.3 lists pin functions for the case where the multiple transfer clock output pin select function is deselected. **Table 14.4** lists the P64 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 14.3 Pin Functions	When Not Select Multiple Transfer	Clock Output Pin Function) ⁽¹⁾
		••••••••••••••••••••••••••••••••••••••

Pin Name	Function	Method of Selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	Set the PD6_2 bit and PD6_6 bit in the PD6 register, and PD7_1 bit in the PD7 register to 0 (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	Set the CKDIR bit in the UiMR register to 0
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to 1 Set the PD6_1 bit and PD6_5 bit in the PD6 register, and the PD7_2 bit in the PD7 register to 0
CTSi/RTSi (P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 0 Set the PD6_0 bit and PD6_4 bit in the PD6 register is set to 0, the PD7_3 bit in the PD7 register to 0
	RTS output	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 1
	I/O port	Set the CRD bit in the UiC0 register to 1

NOTE:

1: When the U1MAP bit in PACR register is 1 (P73 to P70), UART1 pin is assgined to P73 to P70.

Table 14.4 P64 Pin Functions⁽¹⁾

			Bit Se	et Value		
Pin Function	U1C0	register	U	ICON registe	er	PD6 register
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P64	1	—	0	0	—	Input: 0, Output: 1
CTS1	0	0	0	0		0
RTS1	0	1	0	0		—
CTS ₀ (2)	0	0	1	0		0
CLKS1	—			1 ⁽³⁾	1	—

NOTES:

1. When the U1MAP bit in PACR register is 1 (P73 to P70), this table lists the P70 functions.

 In addition to this, set the CRD bit in the U0C0 register to 0 (CT00/RT00 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

3. When the CLKMD1 bit is set to 1 and the CLKMD0 bit is set to 0, the following logic levels are output: • High if the CLKPOL bit in the U1C0 register is set to 0

• Low if the CLKPOL bit in the U1C0 register is set to 1

14.1.1.1 Counter Measure for Communication Error Occurs

If a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below.

•Resetting the UiRB register (i=0 to 2)

- (1) Set the RE bit in the UiC1 register to 0 (reception disabled)
- (2) Set bits SMD2 to SMD0 in the UiMR register to 0002 (Serial I/O disabled)
- (3) Set bits SMD2 to SMD0 in the UiMR register to 0012 (Clock synchronous serial I/O mode)
- (4) Set the RE bit in the UiC1 register to 1 (reception enabled)

•Resetting the UiTB register (i=0 to 2)

- (1) Set bits SMD2 to SMD0 in the UiMR register to 0002 (Serial I/O disabled)
- (2) Set bits SMD2 to SMD0 in the UiMR register to 0012 (Clock synchronous serial I/O mode)
- (3) 1 is written to TE bit in the UiC1 register (reception enabled), regardless to the TE bit.

Table 14.7 lists the functions of the input/output pins in UART mode. **Table 14.8** lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Pin Name	Function	Method of Selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs "H" when performing reception only)
RxDi (P62, P66, P71)	Serial data input	PD6_2 bit, PD6_6 bit in the PD6 register and the PD7_1 bit in the PD7 register (Can be used as an input port when performing transmission only)
CLKi	Input/output port	Set the CKDIR bit in the UiMR register to 0
(P61, P65, P72)	Transfer clock input	Set the CKDIR bit in the UiMR register to 1 Set the PD6_1 bit and PD6_5 bit in the PD6 register to 0, PD7_2 bit in the PD7 register to 0
CTSi/RTSi (P60, P64, P73)	CTS input	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 0 Set the PD6_0 bit and PD6_4 bit in the PD6 register to 0, the PD7_3 bit in the PD7 register 0
	RTS output	Set the CRD bit in the UiC0 register to 0 Set the CRS bit in the UiC0 register to 1
	Input/output port	Set the CRD bit in the UiC0 register 1

Table 14.7 I/O Pin Functions in UART mode⁽¹⁾

NOTE:

1. When the U1MAP bit in PACR register is set to 1 (P73 to P70), UART1 pin is assgined to P73 to P70.

			Bit Se	et Value	
Pin Function	U1C0	register	UCON	register	PD6 register
	CRD	CRS	RCSP	CLKMD1	PD6_4
P64	1		0	0	Input: 0, Output: 1
CTS1	0	0	0	0	0
RTS1	0	1	0	0	
CTS ₀ ⁽²⁾	0	0	1	0	0

Table 14.8 P64 Pin Functions in UART mode ⁽¹⁾

NOTES:

1. When the U1MAP bit in PACR register is 1 (P73 to P70), this table lists the P70 functions.

2. In addition to this, set the CRD bit in the U0C0 register to 0 (CTS0/RTS0 enabled) and the CRS bit in the U0C0 register to 1 (RTS0 selected).

14.1.2.2 Counter Measure for Communication Error

If a communication error occurs while transmitting or receiving in UART mode, follow the procedure below.

- Resetting the UiRB register (i=0 to 2)
- (1) Set the RE bit in the UiC1 register to 0 (reception disabled)
- (2) Set the RE bit in the UiC1 register to 1 (reception enabled)
- Resetting the UiTB register (i=0 to 2)
- (1) Set bits SMD2 to SMD0 in UiMR register 0002 (Serial I/O disabled)
- (2) Set bits SMD2 to SMD0 in UiMR register 0012, 1012, 1102
- (3) 1 is written to TE bit in the UiC1 register (reception enabled), regardless of the TE bit

14.1.2.3 LSB First/MSB First Select Function

As shown in **Figure 14.18**, use the UFORM bit in the UiC0 register to select the transfer format. This function is valid when transfer data is 8 bits long.

CLKi	
TxDi	ST (D0) D1) D2) D3) D4) D5) D6) D7) P) SP
RXDi	ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
(2) When the	e UFORM bit in the UiC0 register is set to 1 (MSB first)
CLKi	
TXDi	ST / D7 / D6 / D5 / D4 / D3 / D2 / D1 / D0 / P / SP
RXDi	ST (D7) D6) D5) D4) D3) D2) D1) D0) P) SP
ST : Start bit P : Parity bit SP : Stop bit = 0 to 2	
edge and to to 0 (no rev	s to the case where the CKPOL bit in the UiC0 register is set to 0 (transmit data output at the falling he receive data taken in at the rising edge of the transfer clock), the UiLCH bit in the UiC1 register is set verse), the STPS bit in the UiMR register is set to 0 (1 stop bit) and the PRYE bit in the UiMR register is arity enabled).

Figure 14.18 Transfer Format

14.1.4 Special Mode 2 (UART2)

Multiple slaves can be serially communicated from one master. Transfer clock polarity and phase are selectable. **Table 14.15** lists the specifications of Special Mode 2. **Table 14.16** lists the registers used in Special Mode 2 and the register values set. **Figure 14.26** shows communication control example for Special Mode 2.

Item	Specification				
Transfer data format	Transfer data length: 8 bits				
Transfer clock	Master mode				
	the CKDIR bit in the U2MR register is set to 0 (internal clock) : fj/ (2(n+1))				
	fj = f1sio, f2sio, f8sio, f32sio. n: Setting value in the U2BRG register 0016 to FF16				
	Slave mode				
	CKDIR bit is set to 1 (external clock selected) : Input from CLK2 pin				
Transmit/receive control	Controlled by input/output ports				
Transmission start condition	Before transmission can start, the following requirements must be met ⁽¹⁾				
	 The TE bit in the U2C1 register is set to 1 (transmission enabled) 				
	- The TI bit in the U2C1 register is set to 0 (data present in U2TB register)				
Reception start condition	Before reception can start, the following requirements must be met (1)				
	 The RE bit in the U2C1 register is set to 1 (reception enabled) 				
	 The TE bit in the U2C1 register is set to 1 (transmission enabled) 				
	– The TI bit in the U2C1 register is set to 0 (data present in the U2TB register)				
Interrupt request	For transmission, one of the following conditions can be selected				
generation timing	– The U2IRS bit in the U2C1 register is set to 0 (transmit buffer empty): when trans				
	ferring data from the U2TB register to the UART2 transmit register (at start of transmission)				
	– The U2IRS bit is set to 1 (transfer completed): when the serial I/O finished sending				
	data from the UART2 transmit register				
	For reception				
	When transferring data from the UART2 receive register to the U2RB register (at				
	completion of reception)				
Error detection	• Overrun error ⁽²⁾				
	This error occurs if the serial I/O started receiving the next data before reading the				
	U2RB register and received the 7th bit in the the next data				
Select function	Clock phase setting				
	Selectable from four combinations of transfer clock polarities and phases				

Table 14.15 Special Mode 2 Specifications

NOTES:

- 1. When an external clock is selected, the conditions must be met while if the CKPOL bit in the U2C0 register is set to 0 (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the CKPOL bit in the U2C0 register is set to 1 (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.
- 2. If an overrun error occurs, bits 8 to 0 in the U2RB register are undefined. The IR bit in the S2RIC register remains unchanged.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol ADTRG	Address CON 03D216	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	SSE	A/D operation mode select bit 2	Simultaneous sample sweep mode or delayed trigger mode 0, 1	RW
	DTE	A/D operation mode select bit 3	Delayed trigger mode 0, 1	RW
	HPTRG0	AN0 trigger select bit	See Table 15.11	RW
· · · · · · · · · · · · · · · · · · ·	HPTRG1	AN1 trigger select bit	See Table 15.11	RW
<u></u>	(b7-b4)	Nothing is assigned. If nec When read, the content is (-

Figure 15.23 ADTRGCON Register in Delayed Trigger Mode 0

Table 15.11 Trigger Select Bit Setting in Delayed Trigger Mode 0

TRG	TRG1	HPTRG0	HPTRG1	Trigger
0	0	1	1	Timer B0, B1 underflow

15.2 Resolution Select Function

The BITS bit in the ADCON1 register determines the resolution. When the BITS bit is set to 1 (10-bit precision), the A/D conversion result is stored into bits 0 to 9 in the ADI register (i=0 to 7). When the BITS bit is set to 0 (8-bit precision), the A/D conversion result is stored into bits 7 to 0 in the ADI register.

15.3 Sample and Hold

When the SMP bit in the ADCON 2 register is set to 1 (with the sample and hold function), A/D conversion rate per pin increases to 28 ϕ AD cycles for 8-bit resolution or 33 ϕ AD cycles for 10-bit resolution. The sample and hold function is available in one-shot mode, repeat mode, single sweep mode, repeat sweep mode 0 and repeat sweep mode 1. In these modes, start A/D conversion after selecting whether the sample and hold circuit is to be used or not. In simultaneous sample sweep mode, delayed trigger mode 0 or delayed trigger mode, set to use the Sample and Hold function before starting A/D conversion.

15.4 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the ADCON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to 1 (Vref connected) before setting the ADST bit in the ADCON0 register to 1 (A/D conversion started). Do not set the ADST bit and VCUT bit to 1 simultaneously, nor set the VCUT bit to 0 (Vref unconnected) during A/D conversion.

16.5.5 Bit 4: I²C bus Interface Interrupt Request Bit (PIN)

The PIN bit generates an l^2C bus interface interrupt request signal. Every one byte data is ransferred, the PIN bit is changed from 1 to 0. At the same time, an l^2C bus interface interrupt request is generated. The PIN bit is synchronized with the last clock of the internal transfer clock (when ACK-CLK=1, the last clock is the ACK clock: when the ACK-CLK=0, the last clock is the 8th clock) and it becomes 0. The interrupt request is generated on the falling edge of the PIN bit. When the PIN bit is set to 0, the clock applied to SCL maintains "L" and further clock generation is disabled. When the ACK-CLK bit is set to 1 and the WIT bit in the S3D0 register is set to 1 (enable the l^2C bus interface interrupt of data receive completion). The PIN bit is synchronized with the last clock and the falling edge of the ACK clock. Then, the PIN bit is set to 0 and l^2C bus interface interrupt request is generated. Figure 16.11 shows the timing of the l^2C bus interface interrupt request generation.

The PIN bit is set to 1 in one of the following conditions:

•When data is written to the S00 register

•When data is written to the S20 register (when the WIT bit is set to 1 and the internal WAIT flag is set to 1)

•When the ES0 bit in the S1D0 register is set to 0 (I²C bus interface disabled)

•When the IHR bit in the S1D0 register is set to 1(reset)

The PIN bit is set to 0 in one of the following conditions:

•With completion of 1-byte data transmit (including a case when arbitration lost is detected)

•With completion of 1-byte data receive

•When the ALS bit in the S1D0 register is set to 0 (addressing format) and slave address is matched or general call address is received successfully in slave receive mode

•When the ALS bit is set to 1 (free format) and the address data is received successfully in slave receive mode

16.5.6 Bit 5: Bus Busy Flag (BB)

The BB flag indicates the operating conditions of the bus system. When the BB flag is set to 0, a bus system is not in use and a START condition can be generated. The BB flag is set and reset based on an input signal of the SCL and SDA pins either in master mode or in slave mode. When the START condition is detected, the BB flag is set to 1. On the other hand, when the STOP condition is detected, the BB flag is set to 0. Bits SSC4 to SSC0 in the S2D0 register decide to detect between the START condition and the STOP condition. When the ES0 bit in the S1D0 register is set to 0 (I²C bus interface disabled) or when the IHR bit in the S1D0 register is set to 1 (reset), the BB flag is set to 0. Refer to **16.9 START Condition Generation Method and 16.11 STOP Condition Generation Method**.

ScL PIN flag	
I ² CIRQ	

18.5 Pin Assignment Control Register (PACR)

Figure 18.10 shows the PACR register. After reset, set bits PACR2 to PACR0 in the PACR register before a signal is input or output to each pin. When bits PACR2 to PACR0 are not set, some pins do not function as I/O ports.

Bits PACR2 to PACR0: control pins to be used

Value after reset: 0002.

To select the 80-pin package, set the bits to 0112.

To select the 64-pin package, set the bits to 0102.

U1MAP bit: controls pin assignments for the UART1 function.

To assign the UART1 function to P64/CTS1/RTS1, P65/CLK1, P66/RxD1, and P67/TxD1, set the U1MAP bit to 0 (P67 to P64).

To assign the function to P70/CTS1/RTS1, P71/CLK1, P72/RxD1, and P73/TxD1, set the U1MAP bit to 1 (P73 to P70)

The PRC2 bit in the PRCR protects the PACR register. Set the PACR register after setting the PRC2 bit in the PRCR register.

18.6 Digital Debounce Function

Two digital debounce function circuits are provided. Level is determined when level is held, after applying either a falling edge or rising edge to the pin, longer than the programmed filter width time. This enables noise reduction.

This function is assigned to INT5/INPC17 and NMI/SD. Digital filter width is set in the NDDR register and the P17DDR register respectively. **Figure 18.11** shows the NDDR register and the P17DDR register. Additionally, a digital debounce function is disabled to the port P17 input and the port P85 input.

Filter width : (n+1) x 1/f8 n: count value set in the NDDR register and P17DDR register

The NDDR register and the P17DDR register decrement count value with f8 as the count source. The NDDR register and the P17DDR register indicate count time. Count value is reloaded if a falling edge or a rising edge is applied to the pin.

The NDDR register and the P17DDR register can be set 0016 to FF16 when using the digital debounce function. Setting to FF16 disables the digital filter. See **Figure 18.12** for details.

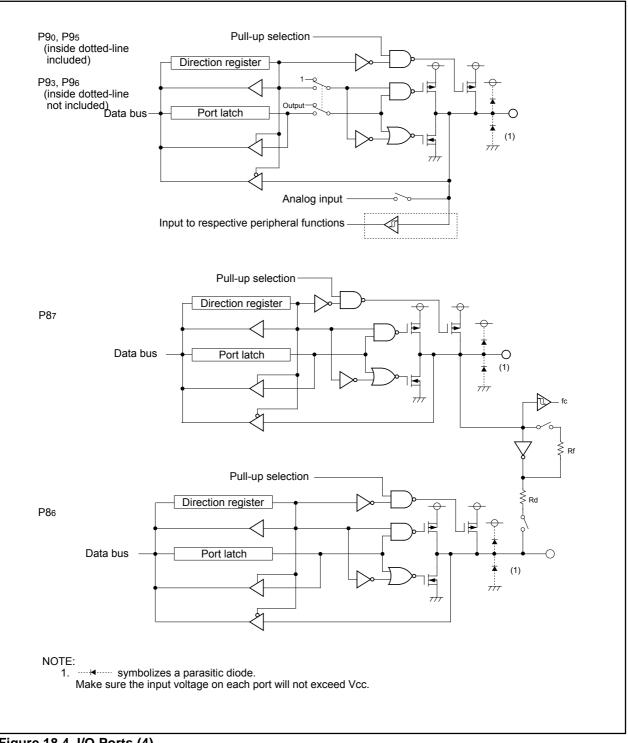


Figure 18.4 I/O Ports (4)

19.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with MCU mounted on a board without using the ROM writer. The program and block erase commands are executed only in the user ROM area.

When the interrupt requests are generated during the erase operation in CPU rewirte mode, the flash memory offers an erase suspend function to suspend the erase operation and process the interrupt operation. During the erase suspend function is operated, the user ROM area can be read by program.

Erase-write(EW) 0 mode and erase-write 1 mode are provided as CPU rewrite mode. **Table 19.3** lists differences between EW mode 0 and EW mode 1. One wait is required for the CPU erase-write control.

Item	EW mode 0	EW mode 1
Operation mode	Single chip mode	Single chip mode
Areas in which a	User ROM area	User ROM area
rewrite control		
program can be located		
Areas where	The rewrite control program must be	The rewrite control program can be
rewrite control	transferred to any other than the flash	excuted in the user ROM area
program can be	memory (e.g., RAM) before being	
executed ⁽²⁾	executed	
Areas which can be	User ROM area	User ROM area
rewritten		However, this excludes blocks with the
		rewrite control program
Software command	None	Program, block erase command
Restrictions		Cannot be executed in a block having
		the rewite control program
		 Read Status Register command
		Cannot be executed
Mode after programming	Read Status Register Mode	Read Array mode
or erasing		
CPU state during auto-	Operating	In a hold state (I/O ports retain the state
write and auto-erase		before the command is excuted ⁽¹⁾
Flash memory status	Read bits FMR00, FMR06, and	Read bits FMR00, FMR06, and FMR07
detection	FMR07 in the FMR0 register by	in the FMR0 registerby program
	program	
	 Execute the read status register 	
	command to read bits SR7, SR5,	
	and SR4.	
Condition for transferring	Set bits FMR40 and FMR41 in	The FMR40 bit in the FMR4 register is
to erase-suspend ⁽³⁾	the FMR4 register to 1 by program.	set to 1 and the interruput request of
		an acknowledged interrupt is generated

Table 19.3 EW Mode 0 and EW Mode 1

NOTES:

1. Do not generate a DMA transfer.

2. Block 1 and Block 0 are enabled for rewrite by setting FMR02 bit in the FMR0 register to 1 and setting FMR16 bit in the FMR1 register to 1. Block 2 to Block 4 are enabled for rewrite by setting FMR16 bit in the FMR1 register to 1.

3. The time, until entering erase suspend and reading flash is enabled, is maximum *td(SR-ES)* after satisfying the conditions.

19.5.2 Flash Memory Control Register 1 (FMR1)

•FMR11 Bit

EW mode 1 is entered by setting the FMR11 bit to 1 (EW mode 1). The FMR11 bit is valid only when the FMR01 bit is set to 1.

•FMR16 Bit

The combined setting of bits FMR02 and FMR16 enables program and erase in the user ROM area. To set the FMR16 bit to 1, first set it to 0 and then 1. The FMR16 bit is valid only when the FMR01 bit is set to 1 (CPU rewrite mode enable).

•FMR17 Bit

If the FMR17 bit is set to 1 (with wait state), 1 wait state is inserted when blocks A and B are accessed, regardless of the content of the PM17 bit in the PM1 register. The PM17 bit setting is reflected to access other blocks and internal RAM, regardless of the FMR17 bit setting. Set the FMR17 bit to 1 (with wait state) to rewrite more than 100 times.

Table 19.4	Protection	usina	FMR16	and FMR02
	1 1010011011	uonig		

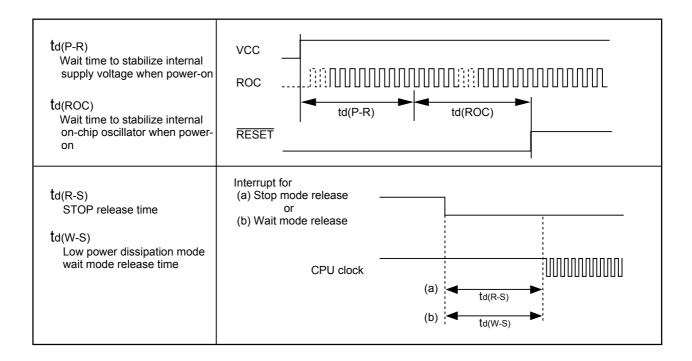
FMR16	FMR02	Block A, Block B	Block 0, Block 1	other user block
0	0	write enabled	write disabled	write disabled
0	1	write enabled	write disabled	write disabled
1	0	write enabled	write disabled	write enabled
1 1		write enabled	write enabled	write enabled

19.5.3 Flash Memory Control Register 4 (FMR4)

•FMR40 Bit

The erase-suspend function is enabled when the FMR40 bit is set to 1 (enabled).

•FMR41 Bit


When the FMR41 bit is set to 1 by program during auto-erasing in EW mode 0, erase-suspend mode is entered. In EW mode 1, the FMR41 bit is automatically set to 1 (suspend request) to enter erase-suspend mode when an enabled interrupt request is generated. Set the FMR41 bit to 0 (erase restart) to restart an auto-erasing operation.

•FMR46 Bit

The FMR46 bit is set to 0 during auto-erasing. It is set to 1 in erase-suspend mode. Do not access to flash memory when the FMR46 bit is set to 0.

Table 20.44 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measurement Condition	Standard			Unit
			Min.	Тур.	Max.	orm
td(P-R)	Wait Time to Stabilize Internal Supply Voltage when Power-on				2	ms
td(ROC)	Wait Time to Stabilize Internal On-chip Oscillator when Power-on	V∞=4.2 to 5.5V			40	μs
td(S-R)	STOP Release Time				150	μs
td(W-S)	Low Power Dissipation Mode Wait Mode Release Time				150	μs

21.15 Noise

Connect a bypass capacitor (approximately 0.1µF) across the Vcc and Vss pins using the shortest and thicker possible wiring. Figure 21.6 shows the bypass capacitor connection.

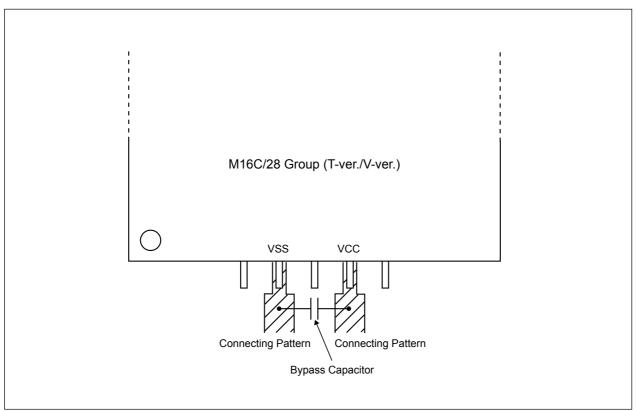


Figure 21.6 Bypass Capacitor Connection

REVISION HISTORY

M16C/28 Group(T-ver./V-ver.) Hardware Manual

Rev.	Date		Description		
		Page	Summary		
		365	• 21.4.6 Rewrite the Interrupt Control Register Example 1 modified		
		371	• 21.6.3 Three-phase Motor Control Timer Function newly added		
		372	• 21.7.1 Rewrite the G1IR Register Description modified		
		373	• 21.7.4 IC/OC Base Timer Interrupt Section newly added		
		381	• 21.13.1 Internal ROM Area partially added		
		383	• 21.14.9 Interrupts EW Mode 1 Description about watchdog timer interrupt deleted		
			• 21.14.10 How to Access partially deleted		
			• 21.14.13 Regarding Programming/Erasure Times and Execution Time De- scription partially modified		
			Functional Comparison		
		-	 Difference between M16C/28 Group and M16C/29 Group (Normal-ver.) is deleted 		
		388	Appendix 2.1 Difference between M16C/28 Group Normal-ver. and m16C/28		
			Group T-ver./V-ver. flash memory added		