E. Renesas Electronics America Inc - M30281FATHP#U3AAM1 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	•
Program Memory Type	-
EEPROM Size	-
RAM Size	•
Voltage - Supply (Vcc/Vdd)	-
Data Converters	•
Oscillator Type	-
Operating Temperature	•
Mounting Type	-
Package / Case	•
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30281fathp-u3aam1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.4 Marking Diagram of Flash Memory Version - M16C/28 Group T-ver. (Top View)

2-----

Table 4.7 SFR Information(7)⁽¹⁾

Address	Register	Symbol	After Reset
03C016	A/D register 0	AD0	XX16
03C116			XX16
03C216	A/D register 1	AD1	XX16
03C316			XX16
03C416	A/D register 2	AD2	XX16
03C516			XX16
03C616	A/D register 3	AD3	XX16
03C716	· · · · · · · · · · · · · · · · · · ·		XX16
03C816	A/D register 4	AD4	XX16
03C916		4.0.5	XX16
03CA16	A/D register 5	AD5	XX16
03CB16	A/D register 6		XX16
03CC16	A/D register 6	ADo	
03CD16	A/D register 7		
03CE16			XX10 XX16
03D016			77710
03D116			
03D216	A/D triager control register	ADTRGCON	0016
03D316	A/D status register 0	ADSTAT0	00000X002
03D416	A/D control register 2	ADCON2	0016
03D516			
03D616	A/D control register 0	ADCON0	00000XXX2
03D716	A/D control register 1	ADCON1	0016
03D816			
03D916			
03DA16			
03DB16			
03DC16			
03DD16			
03DE16			
03DF16		50	
03E016	Port P0 register	P0	XX16
03E116	Port P1 register	P1	XX16
03E216	Port PU direction register	PD0	0016
03E316	Port P1 direction register		<u> </u>
03E416	Port P2 register	P2 P3	
03E516	Port P2 direction register		0046
03E016	Port P3 direction register	PD2	0016
03E816		105	0010
03E916			
03EA16			
03EB16			
03EC16	Port P6 register	P6	XX16
03ED16	Port P7 register	P7	XX16
03EE16	Port P6 direction register	PD6	0016
03EF16	Port P7 direction register	PD7	0016
03F016	Port P8 register	P8	XX16
03F116	Port P9 register	P9	XX16
03F216	Port P8 direction register	PD8	0016
03F316	Port P9 direction register	PD9	000X00002
03F4 ₁₆	Port P10 register	P10	XX16
03F516			
03F616	Port P10 direction register	PD10	0016
03F7 ₁₆			
03F816			
03F9 ₁₆			
03FA16			
03FB16	Dull up control register 0	DUDA	00.0
03FC16	Pull-up control register 0		0016
03FD16	Pull-up control register 1		0016
03FE16	Pull-up control register 2	PUK2	0016
03FF16		PUR	UU16

NOTE: 1. The blank areas are reserved and cannot be used by users.

X : Undefined

Figure 10.2 WDC Register and WDTS Register

10.1 Count Source Protective Mode

In this mode, a on-chip oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of run-away.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit in the PRCR register to 1 (enable writes to PM1 and PM2 registers).
- (2) Set the PM12 bit in the PM1 register to 1 (reset when the watchdog timer underflows).
- (3) Set the PM22 bit in the PM2 register to 1 (on-chip oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit in the PRCR register to 0 (disable writes to PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to 1 results in the following conditions

- The on-chip oscillator continues oscillating even if the CM21 bit in the CM2 register is set to "0" (main clock or PLL clock) (system clock of count source selected by the CM21 bit is valid)
- The on-chip oscillator starts oscillating, and the on-chip oscillator clock becomes the watchdog timer count source.

Watchdog timer count (32768)

Watchdog timer period =

on-chip oscillator clock

- The CM10 bit in the CM1 register is disabled against write. (Writing a 1 has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode.

12.1.1 Timer Mode

In timer mode, the timer counts a count source generated internally (see **Table 12.1**). **Figure 12.7** shows TAIMR register in timer mode.

Item	Specification							
Count source	f1, f2, f8, f32, fC32							
Count operation	Decrement							
	When the timer underflows, it reloads the reload register contents and continues counting							
Divide ratio	1/(n+1) n: set value of TAi register (i= 0 to 4) 000016 to FFFF16							
Count start condition	Set TAiS bit in the TABSR register to 1 (start counting)							
Count stop condition	Set TAiS bit to 0 (stop counting)							
Interrupt request generation timing	Timer underflow							
TAilN pin function	I/O port or gate input							
TAiout pin function	I/O port or pulse output							
Read from timer	Count value can be read by reading TAi register							
Write to timer	When not counting and until the 1st count source is input after counting start							
	Value written to TAi register is written to both reload register and counter							
	 When counting (after 1st count source input) 							
	Value written to TAi register is written to only reload register							
	(Transferred to counter when reloaded next)							
Select function	Gate function							
	Counting can be started and stopped by an input signal to TAiIN pin							
Pulse output function								
	Whenever the timer underflows, the output polarity of TAiOUT pin is inverted.							
	When not counting, the pin outputs a low.							

Table 12.1 Specifications in Timer Mode

Figure 12.7 Timer Ai Mode Register in Timer Mode

12.2 Timer B

Figure 12.15 shows a block diagram of the timer B. Figures 12.16 and 12.17 show registers related to the timer B.

Timer B supports the following four modes. Use bits TMOD1 and TMOD0 in the TBiMR register (i = 0 to 2) to select the desired mode.

- Timer mode: The timer counts the internal count source.
- Event counter mode: The timer counts the external pulses or overflows and underflows of other timers.
- Pulse period/pulse width measurement mode: The timer measures the pulse period or pulse width of external signal.
- A/D trigger mode: The timer starts counting by one trigger until the count value becomes 000016. This mode is used together with simultaneous sample sweep mode or delayed trigger mode 0 of A/D converter to start A/D conversion.

	Symbol TB0MR	Address to TB2MR 039B16 to 039E	After Reset D16 00XX00002	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation mode select bit	0 0 : Timer mode or A/D trigger mode 0 1 : Event counter mode	RW
	TMOD1		 1 0 : Pulse period measurement mode, pulse width measurement mode 1 1 : Do not set 	RW
	MR0		Function varies with each operation	RW
· · · · · · · · · · · · · · · · · · ·	MR1		mode	RW
	MR2			RW(1)
· · · · · · · · · · · · · · · · · · ·	MR3			RO
<u>.</u>	TCK0	Count course select hit	Function varies with each operation	RW
	TCK1		mode	RW
)TES: 1. Timer B0. 2. Timer B1. Timer B2				

Figure 12.16 TB0MR to TB2MR Registers

RENESAS

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TB0MR	Address to TB1MR 039B16 to	After Reset 039C16 00XX00002	
	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	RW
· · · · · · · · · · · · · · · · · · ·	TMOD1		0. Timer mode of A/D trigger mode	RW
	MR0	Invalid in A/D trigger mode		RW
	MR1	Either 0 or 1 is enabled		RV
		TB0MR register Set to 0 in A/D trigger mode	3	RV
	MR2	TB1MR register Nothing is assigned. If nece content is undefined	essary, set to 0. When read, its	
	MR3	When write in A/D trigger m mode, the content is undefined	ode, set to 0. When read in A/D trigger ned	RC
·	TCK0	Count source select bit (1)	^{b7 b6} 0 0: f1 or f2 0 1: f8	R٧
L	TCK1		1 0: f32 1 1: fC32	RW

Figure 12.24 TB2SC Register in A/D Trigger Mode

13.4 Time Measurement Function

In synchronization with an external trigger input, the value of the base timer is stored into the G1TMj register (j=0 to 7). **Table 13.5** shows specifications of the time measurement function. **Table 13.6** shows register settings associated with the time measurement function. **Figures 13.19** and **13.20** display operational timing of the time measurement function. **Figure 13.21** shows operational timing of the prescaler function.

Item	Specification
Measurement channel	Channels 0 to 7
Selecting trigger input polarity	Rising edge, falling edge, both edges of the INPC1j pin $^{(1)}$
Measurement start condition	The IFEj bit in the G1FE register should be set to 1 (channels j function enabled) when the FSCj bit (j=0 to 7) in the G1FS register is set to 1 (time measurement function selected).
Measurement stop condition	The IFEj bit should be set to 0 (channel j function disabled)
Time measurement timing	•No prescaler: every time a trigger signal is applied
	•Prescaler (for channel 6 and channel 7):
	every G1TPRk (k=6,7) register value +1 times a trigger signal is applied
Interrupt request generation timing	The G1IRi bit (i=0 to 7) in the interrupt request register (See Figure 13.9) is set to 1 at time measurement timing
INPC1j pin function ⁽¹⁾	Trigger input pin
Selectable function	Digital filter function
	The digital filter samples a trigger input signal level every f1, f2 or fBT1 cycles and passes pulse signal matching trigger input signal level three times
	Prescaler function (for channel 6 and channel 7)
	Time measurement is executed every <i>G1TPRk register value +1</i> times a trigger signal is applied
	 Gate function (for channel 6 and channel 7) After time measurement by the first trigger input, trigger input cannot be accepted. However, while the GOC bit in the G1TMCRk register is set to 1 (gate cleared by matching the base timer with the G1POp register (p=4 when k=6, p=5 when k=7)), trigger input can be accepted again by matching the base timer value with the G1POp register setting Digital Debounce function (for channel7) See 13.6.2 Digital Debounce Function for P17/INT5/INPC17 and 18.6 Digital Debounce Function for details

|--|

NOTE:

1. The INPC10 to INPC17 pins

Figure 14.3 Block diagram of UART2 transmit/receive unit

0 0	b4 b3 b2 b1 b0		Symbol Addres U0MR, U1MR 03A016	s After Reset , 03A816 0016	
		Bit Symbol	Bit Name	Function	RW
	SMD0	Serial I/O mode select bit	0 0 0 : Serial I/O disabled 0 0 1 : Clock synchronous serial I/O mode	RW	
		SMD1		1 0 0 : UART mode transfer data 7 bit long 1 0 1 : UART mode transfer data 8 bit long	RW
		SMD2		Do not set the value other than the above	RW
		CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock ⁽¹⁾	RW
	·	STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RW
		PRY	Odd/even parity select bit	Effective when PRYE = 1 0 : Odd parity 1 : Even parity	RW
		PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
!		(b7)	Reserve bit	Set to 0	RW

NOTES:

Set the corresponding port direction bit for each CLKi pin to 0 (input mode).
 To receive data, set the corresponding port direction bit for each RxDi pin to 0.

b7 b6 b5 b4 b3 b2 b1 b0]	Symbol Address U2MR 037816	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	SMD0	Serial I/O mode select bit	0 0 0 : Serial I/O disabled	RW
·····	SMD1		0 1 0 : I ² C bus mode ₍₃₎ 1 0 0 : UART mode transfer data 7 bit long	RW
	SMD2		1 0 1 : UART mode transfer data 8 bit long 1 1 0 : UART mode transfer data 9 bits long Do not set the value other than the above	RW
	CKDIR	Internal/external clock select bit	0 : Internal clock 1 : External clock ⁽¹⁾	RW
	STPS	Stop bit length select bit	0 : One stop bit 1 : Two stop bits	RW
	PRY	Odd/even parity select bit	Effective when PRYE = 1 0 : Odd parity 1 : Even parity	RW
L	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
l	IOPOL	TxD, RxD I/O polarity reverse bit	0 : No reverse 1 : Reverse	RW

NOTES:

Set the corresponding port direction bit for each CLK2 pin to 0 (input mode).
 To receive data, set the corresponding port direction bit for each RxD2 pin to 0 (input mode).
 Set the corresponding port direction bit for SCL2 and SDA2 pins to 0 (input mode).

Figure 14.5 U0MR to U2MR Registers

		Symbo S4D0	Address 02E716	s After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		TOE	Time out detection function enable bit	0: Disabled 1: Enabled	RW
		TOF	Time out detection flag	0: Not detected 1: Detected	RC
		TOSEL	Time out detection time select bit	0: Long time 1: Short time	RW
		ICK2	I ² C bus system clock	b5 b4 b3 0 0 0 Viic set by ICK1 and ICK0	RW
		ICK3	Select bits	0 0 1 Vic = 1/2.5 fic 0 1 0 Vic = 1/3 fic	RW
		ICK4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RW
		(b6)	Reserved bit	Set to 0	RW
		SCPIN	STOP condition detection interrupt request bit	0: No I ² C bus interface interrupt request 1: I ² C bus interface interrupt request	RW

Figure 16.7 S4D0 Register

7 b6 b5 b4 b3 b2 b1 b0	Symbo S2D0	Address 02E516	After Reset 000110102	
	Bit Symbol	Bit Name	Function	RW
	SSC0			RW
	SSC1	START/STOP condition setting bits ⁽¹⁾	Setting for detection condition of START/STOP condition.	RW
	SSC2			RW
	SSC3			RW
	SSC4			RW
	SIP	ScL/SDA interrupt pin polarity select bit	0: Active in falling edge 1: Active in rising edge	RW
	SIS	ScL/SDA interrupt pin select bit	0: SDA enabled 1: SCL enabled	RW
	STSPSEL	START/STOP condition generation select bit	0: Short setup/hold time mode 1: Long setup/hold time mode	RW

Oscillation	I ² C bus system	I ² C bus system	SSC4-SSC0 ⁽¹⁾	SCL release	Setup time	Hold time
f1 (MHz)	clock select	clock(MHz)		time (cycle)	(cycle)	(cycle)
10	1 / 2f1 ⁽²⁾	5	XXX11110	6.2 μs (31)	3.2 μs (16)	3.0 μs (15)
8	1 / 2f1 ⁽²⁾	4	XXX11010	6.75 μs(27)	3.5 µs (14)	3.25 μs(13)
			XXX11000	6.25 μs(25)	3.25 μs (13)	3.0 μs (12)
8	1 / 8f1 ⁽²⁾	1	XXX00100	5.0 μs (5)	3.0 μs (3)	2.0 μs (2)
4	1 / 2f1 ⁽²⁾	2	XXX01100	6.5 μs (13)	3.5 μs (7)	3.0 µs (6)
			XXX01010	5.5 μs (11)	3.0 μs (6)	2.5 μs (5)
2	1 / 2f1 ⁽²⁾	1	XXX00100	5.0 μs (5)	3.0 µs (3)	2.0 µs (2)

Table 16.2 Recommended setting (SSC4-SSC0) start/stop condition at each oscillation frequency

NOTES:

1. Do not set odd values or 000002 to START/STOP condition setting bits (SSC4 to SSC0)

2. When the PCLK0 bit in the PCLKR register is set to 1.

16.3 I²C0 Clock Control Register (S20 register)

The S20 register is used to set the ACK control, SCL mode and the SCL frequency.

16.3.1 Bits 0 to 4: SCL Frequency Control Bits (CCR0–CCR4)

These bits control the SCL frequency. See Table 16.3 .

16.3.2 Bit 5: SCL Mode Specification Bit (FAST MODE)

The FAST MODE bit selects SCL mode. When the FAST MODE bit is set to 0, standard clock mode is entered. When it is set to 1, high-speed clock mode is entered.

When using the high-speed clock mode I^2C bus standard (400 kbits/s maximum) to connect buses, set the FAST MODE bit to 1 (select SCL mode as high-speed clock mode) and use the I^2C bus system clock (VIIC) at 4 MHz or more frequency.

16.3.3 Bit 6: ACK Bit (ACKBIT)

The ACKBIT bit sets the SDA status when an ACK clock⁽¹⁾ is generated. When the ACKBIT bit is set to "0", ACK is returned and te clock applied to SDA becomes "L" when ACK clock is generated. When it is set to 1, ACK is not returned and the clock clock applied to SDA maintains "H" at ACK clock generation.

When the ACKBIT bit is set to 0, the address data is received. When the slave address matches with the address data, SDA becomes "L" automatically (ACK is returned). When the slave address and the address data are not matched, SDA becomes "H" (ACK is not returned).

NOTE:

1. ACK clock: Clock for acknowledgment

16.3.4 Bit 7: ACK Clock Bit (ACK-CLK)

The ACK-CLK bit set a clock for data transfer acknowledgement. When the ACK-CLK bit is set to 0, ACK clock is not generated after data is transferred. When it is set to 1, a master generates ACK clock every one-bit data transfer is completed. The device, which transmits address data and control data, leave SDA pin open (apply "H" signal to SDA) when ACK clock is generated. The device which receives data, receives the generated ACKBIT bit.

NOTE:

1.Do not rewrite the S20 register, other than the ACKBIT bit during data transfer. If data is written to other than the ACKBIT bit during transfer, the I²C bus clock circuit is reset and the data may not be transferred successfully.

16.5 I²C0 Status Register (S10 register)

The S10 register monitors the l^2C bus interface status. When using the S10 register to check the status, use the 6 low-order bits for read only.

16.5.1 Bit 0: Last Receive Bit (LRB)

The LRB bit stores the last bit value of received data. It can also be used to confirm whether ACK is received. If the ACK-CLK bit in the S20 register is set to 1 (with ACK clock) and ACK is returned when the ACK clock is generated, the LRB bit is set to 0. If ACK is not returned, the LRB bit is set to 1. When the ACK-CLK bit is set to 0 (no ACK clock), the last bit value of received data is input. When writing data to the S00 register, the LRB bit is set to 0.

16.5.2 Bit 1: General Call Detection Flag (ADR0)

When the ALS bit in the S1D0 register is set to 0 (addressing format), this ADR0 flag is set to 1 by receiving the general calls⁽¹⁾, whose address data are all 0, in slave mode.

The ADR0 flag is set to 0 when STOP or START conditions is detected or when the IHR bit in the S1D0 register is set to 1 (reset).

NOTE:

1. General call: A master device transmits the general call address 0016 to all slaves. When the master device transmits the general call, all slave devices receive the controlled data after general call.

16.5.3 Bit 2: Slave Address Comparison Flag (AAS)

The AAS flag indicates a comparison result of the slave address data after enabled by setting the ALS bit in the S1D0 register to 0 (addressing format).

The AAS flag is set to 1 when the 7 bits of the address data are matched with the slave address stored into the S0D0 register, or when a general call is received, in slave receive mode. The AAS flag is set to 0 by writing data to the S00 register. When the ES0 bit in the S1D0 register is set to 0 (I^2C bus interface disabled) or when the IHR bit in the S1D0 register is set to 1 (reset), the AAS flag is also set to 0.

16.5.4 Bit 3: Arbitration Lost Detection Flag (AL)⁽¹⁾

In master transmit mode, if an "L" signal is applied to the SDA pin by other than the MCU, the AL flag is set to 1 by determining that the arbitration is los and the TRX bit in the S10 register is set to 0 (receive mode) at the same time. The MST bit in the S10 register is set to 0 (slave mode) after transferring the bytes which lost the arbitration.

The arbitration lost can be detected only in master transmit mode. When writing data to the S00 register, the AL flag is set to 0. When the ES0 bit in the S1D0 register is set to 0 (I^2C bus interface disabled) or when the IHR bit in the S1D0 register is set to 1 (reset), the AL flag is set to 0.

NOTE:

1. Arbitration lost: communication disabled as a master

16.5.5 Bit 4: I²C bus Interface Interrupt Request Bit (PIN)

The PIN bit generates an l^2C bus interface interrupt request signal. Every one byte data is ransferred, the PIN bit is changed from 1 to 0. At the same time, an l^2C bus interface interrupt request is generated. The PIN bit is synchronized with the last clock of the internal transfer clock (when ACK-CLK=1, the last clock is the ACK clock: when the ACK-CLK=0, the last clock is the 8th clock) and it becomes 0. The interrupt request is generated on the falling edge of the PIN bit. When the PIN bit is set to 0, the clock applied to SCL maintains "L" and further clock generation is disabled. When the ACK-CLK bit is set to 1 and the WIT bit in the S3D0 register is set to 1 (enable the l^2C bus interface interrupt of data receive completion). The PIN bit is synchronized with the last clock and the falling edge of the ACK clock. Then, the PIN bit is set to 0 and l^2C bus interface interrupt request is generated. Figure 16.11 shows the timing of the l^2C bus interface interrupt request generation.

The PIN bit is set to 1 in one of the following conditions:

•When data is written to the S00 register

•When data is written to the S20 register (when the WIT bit is set to 1 and the internal WAIT flag is set to 1)

•When the ES0 bit in the S1D0 register is set to 0 (I²C bus interface disabled)

•When the IHR bit in the S1D0 register is set to 1(reset)

The PIN bit is set to 0 in one of the following conditions:

•With completion of 1-byte data transmit (including a case when arbitration lost is detected)

•With completion of 1-byte data receive

•When the ALS bit in the S1D0 register is set to 0 (addressing format) and slave address is matched or general call address is received successfully in slave receive mode

•When the ALS bit is set to 1 (free format) and the address data is received successfully in slave receive mode

16.5.6 Bit 5: Bus Busy Flag (BB)

The BB flag indicates the operating conditions of the bus system. When the BB flag is set to 0, a bus system is not in use and a START condition can be generated. The BB flag is set and reset based on an input signal of the SCL and SDA pins either in master mode or in slave mode. When the START condition is detected, the BB flag is set to 1. On the other hand, when the STOP condition is detected, the BB flag is set to 0. Bits SSC4 to SSC0 in the S2D0 register decide to detect between the START condition and the STOP condition. When the ES0 bit in the S1D0 register is set to 0 (I²C bus interface disabled) or when the IHR bit in the S1D0 register is set to 1 (reset), the BB flag is set to 0. Refer to **16.9 START Condition Generation Method and 16.11 STOP Condition Generation Method**.

Sc∟ PIN flag	
I ² CIRQ	

Scl _	7 clock	8 clock	ACK	7		1 clock		
SDA -	7 bit	8 bit	ACK bit		X 1	bit X		
	/		/\		/\	/ \		
ACKBIT bit								
PIN flag								
Internal WAIT flag								
I ² C bus interface								
interrupt request signal					П			
The writing signal of								
receive mode, ACK	bit = 1 WIT	bit = 1]	ACK	:			
receive mode, ACK	bit = 1 WIT	bit = 1 8 clock	1 X	ACK clock				 X
receive mode, ACK	bit = 1 WIT	bit = 1 8 clock	X	ACK				X
ACKBIT bit	bit = 1 WIT	bit = 1 8 clock	X	ACK clock			1 bit	X
ACKBIT bit Internal WAIT flag	bit = 1 WIT	bit = 1 8 clock 8 bit	L X	ACK clock			1 bit	X X
Internal WAIT flag	bit = 1 WIT	bit = 1 8 clock 8 bit	1)	ACK clock	2)			X X
receive mode, ACK ScL	bit = 1 WIT	bit = 1 8 clock	1)		2)		1 bit	X

Figure 16.12 The timing of the interrupt generation at the completion of the data receive

16.6.3 Bits 2,3 : Port Function Select Bits PED, PEC

If the ES0 bit in the S1D0 register is set to 1 (I²C bus interface enabled), the SDAMM functions as an output port. When the PED bit is set to 1 and the SCLMM functions as an output port when the PEC bit is set to 1. Then the setting values of bits P2_0 and P2_1 in the port P2 register are output to the I²C bus, regardless of he internal SCL/SDA output signals. (SCL/SDA pins are onnected to I²C bus interface circuit)

The bus data can be read by reading the port pi direction register in input mode, regardless of the setting values of the PED and PEC bits. **Table 16.5** shows the port specification.

Pin Name	ES9 Bit	PED Bit	P20 Port Direction Register	Function		
	0	-	0/1	Port I/O function		
P20	1	0	-	SDA I/O function		
	1	1	-	SDA input function, port output function		
Pin Name	ES0 Bit	PEC Bit	P21 Port Direction Register	Function		
	0	-	0/1	Port I/O function		
P21	1	0	-	ScL I/O function		
	1	1	-	ScL input function, port output funcion		

Table 16.5 Port specifications

Note

18. Programmable I/O Ports

Ports P04 to P07, P10 to P14, P34 to P37 and P95 to P97 are not available in 64-pin package.

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 71 lines P0, P1, P2, P3, P6, P7, P8, P9, P10 (except P94) for the 80-pin package, or 55 lines P00 to P03, P15 to P17, P2, P30 to P33, P6, P7, P8, P90 to P93, P10 for the 64-pin package. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high in sets of 4 lines. **Figures 18.1** to **18.4** show the I/O ports. **Figure 18.5** shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input, set the direction bit for that pin to 0 (input mode). Any pin used as an output pin for peripheral functions is directed for output no matter how the corresponding direction bit is set.

18.1 Port Pi Direction Register (PDi Register, i = 0 to 3, 6 to 10)

Figure 18.6 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

18.2 Port Pi Register (Pi Register, i = 0 to 3, 6 to 10)

Figure 18.7 shows the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

18.3 Pull-up Control Register 0 to 2 (PUR0 to PUR2 Registers)

Figure 18.8 shows registers PUR0 to PUR2.

Registers PUR0 to PUR2 select whether the pins, divided into groups of four pins, are pulled up or not. The pins, selected by setting the bits in registers PUR0 to PUR2 to 1 (pull-up), are pulled up when the direction registers are set to 0 (input mode). The pins are pulled up regardless of the pins' function.

18.4 Port Control Register (PCR Register)

Figure 18.9 shows the port control register.

When the P1 register is read after setting the PCR0 bit in the PCR register to 1, the corresponding port latch can be read no matter how the PD1 register is set.

19.3 Functions To Prevent Flash Memory from Rewriting

The flash memory has a built-in ROM code protect function for parallel I/O mode and a built-in ID code check function for standard input/output mode to prevent the flash memory from reading or rewriting.

19.3.1 ROM Code Protect Function

The ROM code protect function disables reading or changing the contents of the on-chip flash memory in parallel I/O mode. **Figure 19.3** shows the ROMCP address. The ROMCP address is located in a user ROM area. To enable ROM code protect, set the ROMCP1 bit to 002, 012, or 102 and set the bits 5 to 0 to 1111112.

To cancel ROM code protect, erase the block including the the ROMCP register in CPU rewrite mode or standard serial I/O mode.

19.3.2 ID Code Check Function

Use the ID code check function in standard serial input/output mode. Unless the flash memory is blank, the ID code sent from the programmer and the 7-byte ID code written in the flash memory are compared for match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID code consists of 8-bit data, starting with the first byte, into addresses, 0FFFDF16, 0FFFE316, 0FFFE316, 0FFFE316, 0FFFF316, 0FFFF716, and 0FFFFB16. The flash memory must have a program with the ID code set in these addresses.

Figure 19.7 Setting and Resetting of EW Mode 0

RENESAS

Figure 20.8 Timing Diagram (2)

Figure 20.9 Timing Diagram (3)

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M16C/28 Group (T-ver./V-ver.) Publication Data : Rev.1.00 Dec. 26, 2005 Rev.1.10 Mar. 30, 2007 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

^{© 2007.} Renesas Technology Corp., All rights reserved. Printed in Japan.