
NXP USA Inc. - MC68060RC50 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 50MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68060rc50

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68060rc50-4469462
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

MOTOROLA

M68060 USER’S MANUAL

v

PREFACE

The complete documentation package for the MC68060, MC68LC060, and MC68EC060
(collectively called M68060) consists of the M68060UM/AD, M68060 User’s Manual, and
the M68000PM/AD, M68000 Family Programmer’s Reference Manual. The M68060 User’s
Manual describes the capabilities, operation, and programming of the M68060 superscalar
32-bit microprocessors. The M68000 Family Programmer’s Reference Manual contains the
complete instruction set for the M68000 family.

The introduction of this manual includes general information concerning the MC68060 and
summarizes the differences among the M68060 family devices. Additionally, appendices
provide detailed information on how these M68060 derivatives operate differently from the
MC68060.

When reading this manual, disregard information concerning the floating-point unit in refer-
ence to the MC68LC060, and disregard information concerning the floating-point unit and
memory management unit in reference to the MC68EC060.

The organization of this manual is as follows:

Section 1 Introduction

Section 2 Signal Description

Section 3 Integer Unit

Section 4 Memory Management Unit

Section 5 Caches

Section 6 Floating-Point Unit

Section 7 Bus Operation

Section 8 Exception Processing

Section 9 IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

Section 10 Instruction Timings

Section 11 Applications

Section 12 Electrical and Thermal Characteristics

Section 13 Ordering Information and Mechanical Data

Appendix A MC68LC060

Appendix B MC68EC060

Appendix C MC68060 Software Package

Appendix D M68060 Instructions

Introduction

MOTOROLA M68060 USER’S MANUAL 1-21

1.10 NOTATIONAL CONVENTIONS
Table 1-4 lists the notation conventions used throughout this manual.

NOTES:
1.Where d is direction, left or right.
2.Emulation support only, not supported in hardware.
3.Where r is rounding precision, single or double precision.
4.List refers to register.
5.List refers to control registers only.
6.MOVE16 (ax)+,(ay)+ is functionally the same as MOVE16 (ax),(ay)+ when ax = ay. The address register is
only incremented once, and the line is copied over itself rather than to the next line.
7.Not available for the MC68EC060.
8.Emulation support for misaligned operands.
9.Emulation support for FMCVEM with dynamic register list.

Table 1-4. Notational Conventions
Single- And Double-Operand Operations

+ Arithmetic addition or postincrement indicator.
– Arithmetic subtraction or predecrement indicator.
× Arithmetic multiplication.
÷ Arithmetic division or conjunction symbol.
~ Invert; operand is logically complemented.
• Logical AND
+ Logical OR
⊕ Logical exclusive OR

˘ Source operand is moved to destination operand.

¯ ˘ Two operands are exchanged.
<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.
sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format ÷ Offset Word ˘ (SSP); SSP – 2 ˘ SSP; PC ˘ (SSP); SSP – 4 ˘ SSP; SR ˘
(SSP); SSP – 2 ˘ SSP; (Vector) ˘ PC

STOP Enter the stopped state, waiting for interrupts.
<operand>10 The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>

else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false and
the optional “else” clause is present, the operations after “else” are performed. If the condition is
false and else is omitted, the instruction performs no operation. Refer to the Bcc instruction de-
scription as an example.

Register Specification
An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.
BR Base Register—An, PC, or suppressed.
Dc Data register D7–D0, used during compare.

Dh, Dl Data registers high- or low-order 32 bits of product.
Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.
Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.
MRn Any Memory Register n.

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-3

2.1 ADDRESS AND CONTROL SIGNALS

The following paragraphs describe the MC68060 address and control signals.

2.1.1 Address Bus (A31–A0)

These three-state bidirectional signals provide the address of the first item of a bus transfer
(except for interrupt acknowledge transfers) when the MC68060 is the bus master. When an
alternate bus master is controlling the bus and asserts the SNOOP signal, the address sig-

Figure 2-1. Functional Signal Groups

TEA

MC68060

VCC

GND

BUS ARBITRATION
CONTROL

BGR
BG

BB

BUS SNOOP CONTROL
SNOOP

INTERRUPT
CONTROL

IPL2

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

CLKEN
CLK

TEST

THERM0

TMS
TCK

TDI

THERMAL RESISTOR
CONNECTIONS

THERM1

IPL1
IPL0

STATUS AND
CLOCKS

PST3
PST2
PST1

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS BUS
AND CONTROL

TS

TIP

SLAVE
TRANSFER
CONTROL

R/W

LOCKE
CIOUT

TT1
TT0
TM2
TM1
TM0

TLN1
TLN0
UPA1
UPA0

SIZ1
SIZ0

LOCK

TA

MDIS

PST0

BS0
BS1
BS2
BS3

SAS

TCI

TRA

PST4

BTT

BR
CLA

TRST
TDO

POWER SUPPLY
TBI

JTAG

Signal Description

MOTOROLA M68060 USER’S MANUAL 2-17

2.11.4 Test Data In (TDI)
This input signal provides a serial data input to the TAP. TDI should be tied to VCC if it is not
used and emulation mode is not to be used.

2.11.5 Test Data Out (TDO)
This three-state output signal provides a serial data output from the TAP. The TDO output
can be placed in a high-impedance mode to allow parallel connection to board-level test
data paths.

2.11.6 Test Reset (TRST)
This input signal provides an asynchronous reset of the TAP controller. TRST should be
grounded if 1149.1 operation is not to be used.

2.12 THERMAL SENSING PINS (THERM1, THERM0)
THERM1 and THERM0 are connected to an internal thermal resistor and provide informa-
tion about the average temperature of the die. The resistance across these two pins is pro-
portional to the average temperature of the die. The temperature coefficient of the resistor
is approximately 1.2 Ω/°C with a nominal resistance of 400Ω at 25°C.

2.13 POWER SUPPLY CONNECTIONS
The MC68060 requires connection to a VCC power supply, positive with respect to ground.
The VCC and ground connections are grouped to supply adequate current to the various
sections of the processor. Section 13 Ordering Information and Mechanical Data
describes the groupings of the VCC and ground connections.

2.14 SIGNAL SUMMARY
Table 2-8 provides a summary of the electrical characteristics of the MC68060 signals.

Memory Management Unit

4-24 M68060 USER’S MANUAL MOTOROLA

4.3 ADDRESS TRANSLATION CACHES
The ATCs in the MMUs are four-way set-associative caches that each store 64 logical-to-
physical address translations and associated page information similar in form to the corre-
sponding page descriptors in memory. The purpose of the ATC is to provide a fast mecha-
nism for address translation by avoiding the overhead associated with a table search of the
logical-to-physical mapping of recently used logical addresses. Figure 4-19 illustrates the
organization of the ATC.

Each ATC entry consists of a physical address, attribute information from a corresponding
page descriptor, and a tag that contains a logical address and status information. Figure 4-
20, which illustrates the entry and tag fields, is followed by field definitions listed in alphabet-
ical order.

Figure 4-19. ATC Organization

3

PAGE FRAME PAGE OFFSET

MUX

MUX

MUX

2
1

COMPARATOR
0

STATUS

PA(31–13)

PA(11–0)

PA(12)

PAGE SIZE

PAGE SIZE

116

3

1 12

1

17

29

19

9

1

4

17

0121631

HIT 3
HIT 2
HIT 1
HIT 0

HITHIT
DETECT

LINE SELECT

TAG ENTRY

29

F
C

SET 0

SET 1

SET 15

TAG ENTRY

•
•
•

•
•
•

SET
SELECT

2

Caches

MOTOROLA

M68060 USER’S MANUAL

5-15

vide a mechanism that allows the instruction fetch pipeline to detect and change instruction
streams before the change-of-flow instructions enter an operand execution pipeline.

The branch cache implementation is made up of a five-state prediction model based on past
execution history, in addition to the current program counter/branch target virtual address
association logic.

For each instruction fetch address generated, the branch cache is examined to see if a valid
branch entry is present. If there is not a branch cache hit, the instruction fetch unit continues
to fetch instructions sequentially. If a branch cache hit occurs indicating a “taken branch”,
the instruction fetch unit discards the current instruction steam and begins fetching at the
location indicated by the branch target address. As long as the branch cache prediction is
correct, which happens a very significant percentage of the time, the change-of-flow of the
instruction stream is “invisible” to the OEP and performance is maximized. If the branch
cache prediction is wrong, the internal pipelines are “cancelled” and the correct instruction
flow is established.

The branch cache must be cleared by the operating system on all context switches (using
the MOVEC to CACR instruction), because it is virtually-mapped.

The branch cache is automatically cleared by the hardware as part of any cache invalidate
(CINV) or any cache push and invalidate (CPUSH) instruction operating on the instruction
cache.

Programs that use the TRAPF instruction extension word as a possible branch target desti-
nation intefere with proper operation of the branch target cache, resulting in an access error
exception. This condition is indicated by the BPE bit in the FSLW of the access error stack.

5.12 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the integer unit. The following paragraphs discuss the operational details for the caches
and present state diagrams depicting the cache line state transitions.

5.12.1 Instruction Cache

The integer unit uses the instruction cache to store instruction prefetches as it requests
them. Instruction prefetches are normally requested from sequential memory locations
except when a change of program flow occurs (e.g., a branch taken) or when an instruction
that can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol that
allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the long word containing the instruc-
tion is places onto the internal instruction data bus. When an access misses in the cache,
the cache controller requests the line containing the required data from memory and places
it in the cache. If available, an invalid line is selected and updated with the tag and data from
memory. The line state then changes from invalid to valid by setting the V-bit. If all lines in
the set are already valid, a pseudo round-robin replacement algorithm is used to select one

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-5

6.1.3.1 FLOATING-POINT CONDITION CODE BYTE.

The FPCC byte (see Figure 6-4)
contains four condition code bits that are set at the end of all arithmetic instructions involving
the floating-point data registers. These bits are sign of mantissa (N), zero (Z), infinity (I), and
NAN. The FMOVE FPm,

<

ea

>

, FMOVEM FPm, and FMOVE FPCR instructions do not affect
the FPCC.

To aid programmers of floating-point subroutine libraries, the MC68060 implements the four
FPCC bits in hardware instead of only implementing the four IEEE conditions. An instruction
derives the IEEE conditions when needed. For example, the programmers of a complex
arithmetic multiply subroutine usually prefer to handle special data types, such as zeros,
infinities, or NANs, separately from normal data types. The floating-point condition codes
allow users to efficiently detect and handle these special values.

6.1.3.2 QUOTIENT BYTE.

The quotient byte (see Figure 6-5) provides compatibility with
the MC68881/MC68882. This byte is set at the completion of the modulo (FMOD) or IEEE
remainder (FREM) instruction, and contains the seven least significant bits of the unsigned
quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions.
For example, seven bits are more than enough to determine the quadrant of a circle in which
an operand resides. The quotient field (bits 22–16) remains set until the user clears it.

6.1.3.3 EXCEPTION STATUS BYTE.

The EXC byte (see Figure 6-6) contains a bit for each
floating-point exception that can occur during the most recent arithmetic instruction or move
operation. The start of most operations clears this byte; however, operations that cannot
generate floating-point exceptions (the FMOVEM and FMOVE control register instructions)
do not clear this byte. An exception handler can use this byte to determine which floating-
point exception(s) caused a trap.

Figure 6-4. Floating-Point Condition Code (FPSR)

Figure 6-5. Floating-Point Quotient Byte (FPSR)

N Z I NAN

31 30 29 28 27 26 25 24

NOT-A-NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

0

23 22 21 20 19 18 17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

S QUOTIENT

SIGN OF QUOTIENT

Floating-Point Unit

6-12 M68060 USER’S MANUAL MOTOROLA

The FPU performs all floating-point internal operations in extended precision. It supports
mixed-mode arithmetic by converting single- and double-precision operands to extended-
precision values before performing the specified operation. The FPU converts all memory
data formats to extended precision before using it in a floating-point operation or loading it
in a floating-point data register. The FPU also converts extended-precision data formats in
a floating-point data register to any data format and either stores it in a memory destination
or in an integer data register.

If the external operand is a denormalized number or unnormalized number, the number is
normalized before an operation is performed. However, an external denormalized number
moved into a floating-point data register is stored as a denormalized number.

If an external operand is an unnormalized number, the number is normalized before it is
used in an arithmetic operation. If the external operand is an unnormalized zero (i.e., with a
mantissa of all zeros), the number is converted to a normalized zero before the specified
operation is performed. The regular use of unnormalized inputs not only defeats the purpose
of the IEEE 754 standard, but also can produce gross inaccuracies in the results.

6.3.1 Intermediate Result
Figure 6-8 illustrates the intermediate result format. The intermediate result’s exponent for
some dyadic operations (e.g., multiply and divide) can easily overflow or underflow the 15-
bit exponent of the destination floating-point register. To simplify the overflow and underflow
detection, intermediate results in the FPU maintain a 16-bit, twos-complement integer expo-
nent. Detection of an overflow or underflow intermediate result always converts the 16-bit
exponent into a 15-bit biased exponent before being stored in a floating-point data register.
The FPU internally maintains the 67-bit mantissa for rounding purposes. The mantissa is
always rounded to 64 bits (or less, depending on the selected rounding precision) before it
is stored in a floating-point data register.

If the destination is a floating-point data register, the result is in the extended-precision for-
mat and is rounded to the precision specified by the FPCR PREC bits before being stored.
All mantissa bits beyond the selected precision are zero. If the single- or double-precision
mode is selected, the exponent value is in the correct range even if it is stored in extended-
precision format. If the destination is a memory location, the FPCR PREC bits are ignored.
In this case, a number in the extended-precision format is taken from the source floating-
point data register, rounded to the destination format precision, and then written to memory.

Figure 6-8. Intermediate Result Format

16-BIT EXPONENT 63-BIT FRACTION

LSB OF FRACTION
GUARD BIT
ROUND BIT
STICKY BIT

INTEGER BIT
OVERFLOW BIT

Floating-Point Unit

6-16 M68060 USER’S MANUAL MOTOROLA

If no underflow occurs, the intermediate result is rounded according to the user-selected
rounding precision and rounding mode. After rounding, the INEX2 bit of the FPSR EXC byte
is set accordingly. Finally, the magnitude of the result is checked to see if it is too large to
be represented in the current rounding precision. If so, the OVFL bit of the FPSR EXC byte
is set, and the MC68060 takes a nonmaskable overflow exception and executes the
M68060SP overflow exception handler. The M68060SP returns a correctly signed infinity or
a correctly signed largest normalized number, depending on the rounding mode in effect.

6.4.2 Conditional Testing
Unlike the integer arithmetic condition codes, an instruction either always sets the floating-
point condition codes in the same way or it does not change them at all. Therefore, the
instruction descriptions do not include floating-point condition code settings. The following
paragraphs describe how floating-point condition codes are set for all instructions that mod-
ify condition codes. Refer to 6.1.3.1 Floating-Point Condition Code Byte for a description
of the FPCC byte.

The data type of the operation’s result determines how the four condition code bits are set.
Table 6-8 lists the condition code bit setting for each data type. The MC68060 generates
only eight of the 16 possible combinations. Loading the FPCC with one of the other combi-
nations and executing a conditional instruction can produce an unexpected branch condi-
tion.

The inclusion of the NAN data type in the IEEE floating-point number system requires each
conditional test to include the NAN condition code bit in its Boolean equation. Because a
comparison of a NAN with any other data type is unordered (i.e., it is impossible to determine
if a NAN is bigger or smaller than an in-range number), the compare instruction sets the
NAN condition code bit when an unordered compare is attempted. All arithmetic instructions
also set the FPCC NAN bit if the result of an operation is a NAN. The conditional instructions
interpret the NAN condition code bit equal to one as the unordered condition.

The IEEE 754 standard defines four conditions: equal to (EQ), greater than (GT), less than
(LT), and unordered (UN). In addition, the standard only requires the generation of the con-
dition codes as a result of a floating-point compare operation. The FPU tests for these con-
ditions and 28 others at the end of any operation affecting the condition codes. For purposes
of the floating-point conditional branch, set byte on condition, decrement and branch on con-
dition, and trap on condition instructions, the MC68060 logically combines the four FPCC
bits to form 32 conditional tests. The 32 conditional tests are separated into two groups—16

Table 6-8. Floating-Point Condition Code Encoding
Data Type N Z I NAN

+ Normalized or Denormalized 0 0 0 0
– Normalized or Denormalized 1 0 0 0
+ 0 0 1 0 0
– 0 1 1 0 0
+ Infinity 0 0 1 0
– Infinity 1 0 1 0
+ NAN 0 0 0 1
– NAN 1 0 0 1

Floating-Point Unit

6-20 M68060 USER’S MANUAL MOTOROLA

A floating-point unimplemented instruction exception occurs when the processor attempts
to execute an instruction word pattern that begins with $F, the processor recognizes this bit
pattern as an MC68881 instruction, the FPU is enabled via the processor control register
(PCR), but the floating-point instruction is not implemented in the MC68060 FPU. This
exception corresponds to vector number 11 and shares this vector with the floating-point dis-
abled and the unimplemented F-line exceptions. A stack frame of type 2 is generated when
this exception is reported. The stacked PC points to the logical address of the next instruc-
tion after the floating-point instruction. In addition, the effective address of the floating-point
operand in memory (if any) is calculated and stored in the effective address field.

When an unimplemented floating-point instruction is encountered, the processor waits for
all previous floating-point instructions to complete execution. Pending exceptions are taken
and handled prior to the execution of the unimplemented instruction.

The processor begins exception processing for the unimplemented floating-point instruction
by making an internal copy of the current status register (SR). The processor then enters
the supervisor mode and clears the trace bit. The processor creates a format $2 stack frame
and saves the vector offset, PC, internal copy of the SR, and calculated effective address in
the stack frame. The saved PC value is the logical address of the instruction that follows the
unimplemented floating-point instruction. The processor generates exception vector num-
ber 11 for the unimplemented F-line instruction exception vector, fetches the address of the
F-line exception handler from the processor’s exception vector table, pushes the format $2
stack frame on the system stack, and begins execution of the exception handler after
prefetching instructions to fill the pipeline.

Table 6-11. Unimplemented Instructions
Monadic Operations

FACOS FLOGN
FASIN FLOGNP1
FATAN FMOVECR

FATANH FSIN
FCOS FSINCOS

FCOSH FSINH
FETOX FTAN

FETOXM1 FTANH
FGETEXP FTENTOX
FGETMAN FTWOTOX
FLOG10 FLOG2

Dyadic Operations
FMOD FREM

FSCALE —
Miscellaneous

FTRAPcc FDBcc
FScc —

Unimplemented Effective Address

FMOVEM.X (dynamic register list) FMOVEM.L #immediate, list
 of 2 or 3 control registers

F<op>.X #immediate,FPn F<op>.P #immediate,FPn

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-53

provided for compatibility with existing MC68040-based ASICs and logic. This arbitration
protocol uses the BR, BG, and BB signals. Bus tenure terminated (BTT) must be ignored by
the external arbiter and pulled high using a separate pullup resistor on the MC68060 pin
when using this arbitration protocol.

In addition to the MC68040-arbitration protocol, a high speed MC68060-arbitration protocol
is introduced to provide arbitration activity at higher frequencies. This arbitration protocol
uses the BR, BG, BTT, and BGR signals. BB must be ignored by the external arbiter and
pulled high using a separate pullup resistor on the MC68060 when using this arbitration pro-
tocol.

In either arbitration protocol, the bus arbitration unit in the MC68060 operates synchronously
and transitions between states in which CLK is enabled via CLKEN asserted (on the rising
edge of BCLK). Either arbitration protocol allows arbitration to overlap with bus activity, but
the MC68040-arbitration protocol should not be used at full bus speed. With either arbitra-
tion protocol, each master which can initiate bus cycles must have their TS signals con-
nected together so that the MC68060 can maintain proper internal state. Note also, when
using the MC68040-arbitration protocol, any alternate master which takes over bus owner-
ship and initiates bus cycles with the assertion of TS must also assert BB for the time of its
bus tenure.

7.11.1 MC68040-Arbitration Protocol (BB Protocol)
When using the MC68040-arbitration protocol, BTT must be pulled high through a resistor.
Since BTT is also an output, a separate pullup resistor must be used exclusively for BTT.

The MC68060 requests the bus from the external bus arbiter by asserting BR whenever an
internal bus request is pending. The processor continues to assert BR for as long as it
requires the bus. The processor negates BR at any time without regard to the status of BG
and BB. If the bus is granted to the processor when an internal bus request is generated,
BR is asserted simultaneously with transfer start (TS), allowing the access to begin imme-
diately. The processor always drives BR, and BR cannot be wire-ORed with other devices.

The external arbiter asserts BG to indicate to the processor that it has been granted the bus.
If BG is negated while a bus cycle is in progress, the processor relinquishes the bus at the
completion of the bus cycle, except on locked sequences in which BGR is negated. To guar-
antee that the bus is relinquished, BG must be negated prior to the rising edge of the BCLK
in which the last TA, TEA, or TRA is asserted. Note that the bus controller considers the four
long-word bus transfers of a burst-inhibited line transfer to be a single bus cycle and does
not relinquish the bus until completion of the fourth transfer.

Unlike the MC68040 in which the read and write portions of a locked sequence is divisible,
the MC68060 provides a choice via the BGR input. If BGR is asserted when BG is negated
in the middle of a locked sequence, the MC68060 operates like the MC68040 and relin-
quishes the bus after the current bus cycle is completed. Otherwise, if BGR is negated when
BG is negated, the MC68060 ignores the negated BG, retains bus ownership, and com-
pletes all bus cycles of the locked sequence before giving up the bus. Systems may use the
BGR input to assign severity of the BG negation. For instance, if bus arbitration is used to
allow for DRAM refresh, it is okay to ignore locked sequences and force the MC68060 to

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-8

M68060 USER’S MANUAL

MOTOROLA

Figure 9-3. Output Pin Cell (O.Pin)

Figure 9-4. Observe-Only Input Pin Cell (I.Obs)

OUTPUT DATA
FROM SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER

1 = EXTEST
0 = OTHERWISE

1D

C1

1
MUX

1

G1

1
MUX

1

G1

UPDATE DR

1D

C1

FROM
LAST
CELL

TO
SYSTEM

LOGIC

SHIFT DRCLOCK DR

TO NEXT CELL

1D

C1
1

MUX
1

G1

INPUT
 PIN

Applications Information

11-16 M68060 USER’S MANUAL MOTOROLA

The RAS access time determines the number of wait states needed for the first memory
access. The RAS access time is the time it takes between RAS being asserted and valid
data coming out of the DRAM. The total available time for the first access is the time
between the TS assertion and the first TA assertion. This time is equal to the clock period
multiplied by the number of primary wait states. In addition to the RAS access time, the
MC68060 input setup time and the TS to RAS propagation delay must also occur between
the TS and TA signals. The following equation represents the number of wait states required
for the primary memory access:

Wait States = (RAS propagation delay + RAS access time + Input Setup Time) / clock period

The following example assumes a RAS access time of 65 ns, an input setup time of 7 ns,
and a RAS propagation delay of 5 ns. The processor is running at 50 MHz, so the clock
period is 20 ns. The number of wait states required is (5ns + 65ns + 7ns) / 20 ns = 3.85 wait
states. Therefore 4 wait states are required.

The CAS access time and the CAS precharge time determines the number of secondary
wait states required. The CAS precharge time is the time that the CAS signal must remain
negated between assertions. The total time available for the secondary access is the time
between the first and second TA signals. This time is equal to the clock period multiplied by
the number of secondary wait states. Since CAS must toggle during this time, two CAS prop-
agation delays, the CAS precharge time, the CAS access time, and the MC68060 input
setup time must occur during this time. Typically, the CAS precharge time is less than a
clock period. Therefore an entire clock period is used to toggle CAS. This leaves one CAS
propagation delay time, a CAS access time, and the input setup time. This time must be less
than the number of wait states less one multiplied by the clock period. The following equa-
tion represents the number of wait states required for the secondary memory accesses:

Wait States = [(CAS propagation delay + CAS access time + input setup time) / clock period] + 1

The following example assumes a CAS access time of 20 ns, input setup time of 7 ns, and
a CAS propagation delay of 5 ns. The clock period is 20 ns. The number of wait states
required is [(5ns + 20ns + 7ns) / 20ns] + 1 = 2.6. Therefore three wait states are required.
This first line burst transfer is a 5:3:3:3 transfer. For the primary transfer, an extra clock is
added for the TS signal assertion.

In this example, a second line burst transfer occurs immediately following the first transfer.
If the same DRAM chips are being accessed, RAS precharge time must be considered. RAS
precharge time is the time that the RAS signal must remain high between assertions. In the
example, RAS precharge time is 65 ns. Two additional wait states need to be added after
the second TS to assure that the RAS precharge time is satisfied. Therefore, the second line
burst transfer is a 7:3:3:3 transfer.

Electrical and Thermal Characteristics

12-6

M68060 USERÕS MANUAL

MOTOROLA

Figure 12-2. Reset Configuration Timing

D15ÐD0 in

RSTI

CLK

CLKEN

IPL2ÐIPL0

53

51

BCLK

54

MODE SELECTS REGISTERED
 ON PREVIOUS BCLK EDGE

Electrical and Thermal Characteristics

12-10

M68060 USERÕS MANUAL

MOTOROLA

Figure 12-6. CLA Timing

CLK

CLKEN

BCLK

ADDRESS &
ATTRIBUTES

TS

TIP

CLA

A3ÐA2

60

13

14

65

11

11

64

65

64

11

12

NOTE: Address and attributes refer to the following signals: A31-A0, SIZ1, SIZ0, R/W, TT1, TT0, TM2-TM0, TLN1, TLN

Ordering Information and Mechanical Data

13-4 M68060 USER’S MANUAL MOTOROLA

13.3 MECHANICAL DATA

Figure 13-1 illustrates the MC68060, MC68LC060 and MC68EC060 PGA package dimen-
sions. Figure 13-2 illustrates the MC68060, MC68LC060, and MC68EC060 CQFP package
dimensions. Due to space limitation, Figure 13-2 is represented by a general (smaller) pack-
age outline rather than showing all 208 leads.

Figure 13-1. PGA Package Dimensions (RC Suffix)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

B

C

D

E
F

G
H

J

K

L

M

N

P

Q

R

S

T

DIM
MILLIMETERS INCHES

MIN MAXMIN MAX

1.840 1.880
1.840 1.880
0.110 0.140
0.016 0.020

0.100 BSC

A
B
C
D
G
K

46.74 47.75

2.79 3.05
0.41 0.51

2.54 BSC

46.74 47.75

K

DC

B
A G

G

PIN A1 INDICATOR

– T –– A –

–
B

–

206 PLACES

0.150 0.1703.81 4.32

.020 (.51) M T A M B M

.008 (.20) M T

NOTES:
1. DIMENSIONS AND TOLERANCING PER
 ANSI Y14.5M 1982.
2. CONTROLLING DIMENSION: INCH

MC68060 PGA
CASE NUMBER: 993A-01

MC68060 Software Package

C-6

M68060 USER’S MANUAL

MOTOROLA

C.2.2.1 UNIMPLEMENTED INTEGER INSTRUCTION EXCEPTION MODULE ENTRY
POINTS.

The _isp_unimp function is implemented such that the unimplemented integer
instruction exception vector table entry typically points directly to _isp_unimp. If the system
software chooses to perform operations prior to entering the _isp_unimp function, it may do
so as long as the system stack points to the exception stack frame at the time of entry.

C.2.2.2 UNIMPLEMENTED INTEGER INSTRUCTION EXCEPTION MODULE CALL-
OUTS.

The call-outs _real_trace, _real_chk, _real_divbyzero, and _real_access are defined
to provide the system integrator a choice of either having the module point directly to the
actual trace, chk, divide-by-zero, and access error handler, or to an alternate routine that
would fetch the address of the exception handler from the vector table prior to jumping to
the actual handlers. The direct implementation is ideal for systems that do not anticipate any
changes to the vector table and performance is more critical. The indirect approach of con-
sulting the vector table is more accurate in that if the instruction were implemented, the
actual handler’s address is fetched from the appropriate vector table entry before branching
there.

Other call-outs which are common to the floating-point kernel module are discussed in

C.4
Operating System Dependencies

. These call-outs include the discussion of the
_real_access and other operating-system-dependent functions.

The _isp_done call-out is provided as a means for the system to do any clean-up, if any is
necessary, before executing the RTE instruction to return to normal instruction execution.
The unimplemented integer instruction exception handler will either branch to this call-out or
create an appropriate exception frame and branch to the call-outs _real_trace, _real_chk,
_real_divbyzero, or _real_access routines as outlined previously.

C.2.2.3 CAS MISALIGNED ADDRESS AND CAS2 EMULATION-RELATED CALL-OUTS
AND ENTRY POINTS.

The CAS instruction with misaligned address and CAS2 emulation
is the most system dependent of all MC68060ISP code. The emulation code may require
interaction with a system’s interrupt, paging and access error recovery mechanisms. The
emulation algorithm uses the MOVEC of the BUSCR register to assert the LOCK and
LOCKE signals during emulation. The following is a description of the main steps in the em-
ulation process:

1. Decode instruction and fetch all data from registers as necessary. In addition, if any of
the operand pages are non-resident, then they must be paged in and not be allowed
to be paged out or marked invalid for any reason until the emulation process ends. For
each operand address, the MC68060ISP calls _real_lock_page() which must be pro-
vided by the host operating system to “lock” the pages. This routine should also check
to see if the address passed is valid and writable. If not, then an error result should be
returned to the MC68060ISP.

2. The MC68060ISP then calls the “core” emulation code for either “cas” or “cas2”. The
MC68060ISP references the “core” routines by calling either the _real_cas() or
_real_cas2() call-outs. If the emulation code provided is sufficient for a given system,
then the system integrator can make these call-outs immediately re-enter the package
by calling either _isp_cas() or _isp_cas2() entry points.These entry points will perform
the required emulation. If the “core” routines provided need to be replaced by a more

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-11

divide and the source operand is a zero, then the library routine (as it is last instruction) exe-
cutes an implemented divide using a zero source operand so that an integer divide-by-zero
exception will be taken. Although the exception stack frame will not point to the correct
instruction, the user can at least be able to record that such an event occurred.

C.3 FLOATING-POINT EMULATION PACKAGE (MC68060FPSP)

The MC68060 does not implement some floating-point instructions, addressing modes, and
data types on-chip in order to streamline internal operations. This results in an overall sys-
tem performance improvement at the expense of software emulation of these unimple-
mented instructions, addressing modes, and data types. The M68060SP provides three
separate modules that are related to floating-point operations. The first floating-point module
is the full floating-point kernel module. This module is used for applications that require emu-
lation of the full MC68881 floating-point instruction set, data-types, and IEEE-754 exception
handling. The second floating-point module is the floating-point library. This library is pro-
vided as a separate module for applications that need to avoid the latency incurred by the
F-line exception processing for unimplemented floating-point instructions. However, this
method requires recompiling of existing software to implement subroutine calls. The third
floating-point module, the partial floating-point kernel module, is optional and is used prima-
rily in systems that also integrate the floating-point library. The partial floating-point kernel
module is similar in function to the full floating-point kernel except that it does not contain
the unimplemented floating-point instruction exception handler. This module is provided for
the purpose of saving memory space. Otherwise, the full floating-point kernel module must
be used instead.

* mulu.l <ea>,Dh:Dl
* mulu.l _multiplier,d1:d0

subq.l #$8,sp ; make room for result on stack
pea (sp) ; pass: result addr on stack
move.l d0,-(sp) ; pass: multiplicand on stack
move.l _multiplier,-(sp) ; pass: multiplier on stack
bsr.l _060LISP_TOP+$18 ; branch to multiply routine
add.l #$c,sp ; clear arguments from stack
move.l (sp)+,d1 ; load result[63:32]
move.l (sp)+,d0 ; load result[31:0]

Figure C-6. MUL Instruction Call Example

* cmp2.l <ea>,Rn
* cmp2.l _bounds,d0

pea _bounds ; pass ptr to bounds
move.l d0,-(sp) ; pass Rn
bsr.l _060LSP_TOP_+$48 ; branch to “cmp2” routine
add.l #$8,sp ; clear arguments from stack

Figure C-7. CMP2 Instruction Call Example

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-15

FRESTORE Restore Internal FRESTORE
Floating-Point State

(MC68060 only)

Instruction Format:

Instruction Field:

Effective Address field—Determines the addressing mode for the state frame. Only
postincrement or control addressing modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 1 EFFECTIVE ADDRESS
MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

–(An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

MC68060 Instructions

D-24 M68060 USER’S MANUAL MOTOROLA

PLPA Test a Logical Address PLPA
(MC68060, MC68LC060)

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 1 R/W 0 0 1 ADDRESS REGISTER

