
Motorola - MC68EC060RC50 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 50MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68ec060rc50

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec060rc50-4469148
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-5

Architectural highlights of the MC68060 include:

• Four-Stage Instruction Fetch Unit (IFU)
— 64-Entry Instruction Address Translation Cache (ATC), Organized as 4-Way Set-

Associative, for Fast Virtual-to-Physical Address Translations
— 8- Kbyte, 4-Way Set-Associative, Physically-Mapped Instruction Cache
—256-Entry, 4-Way Set-Associative, Virtually-Mapped Branch Cache, Which Predicts

the Direction of Branches Based on Their Past Execution History
—96-Byte FIFO Instruction Buffer to Allow Decoupling of the IFP and OEPs

• Four-Stage Execution Pipelines Featuring Primary Pipeline (pOEP), Secondary Pipe-
line (sOEP), and Register File (RGF) Containing Program-Visible General Registers
— 64-Entry Operand Data ATC, Organized as 4-Way Set-Associative, for Fast Virtual-

to-Physical Address Translations
— 8- Kbyte, 4-Way Set-Associative, Physically-Mapped Operand Data Cache
— The Operand Data Cache Is Organized in a Banked Structure to Allow Simultaneous

Read/Write Accesses
— Integer Execute Engines Optimized to Perform Most Instruction Executions in a

Single Machine Cycle
—Floating-Point Execute Engine, with Floating-Point Register File, Optimized for Per-

formance with Extended-Precision-Wide Internal Datapaths.
—Four-Entry Store Buffer and One-Entry Push Buffer That Provide the Performance

Feature of Decoupling the Processor Pipeline from External Memory for Certain
Cache Modes of Operation.

This pipeline architecture supports extremely high data transfer rates within the MC68060
processor. The on-chip instruction and operand data caches provide 600 MBytes/sec @ 50
MHz to the pipelines, while the integer execute engines can support sustained transfer rates
of 1.2 GBytes/sec.

1.4 PROCESSOR OVERVIEW

The following paragraphs provide a general description of the MC68060.

1.4.1 Functional Blocks

Figure 1-1 illustrates a simplified block diagram of the MC68060.

Introduction

1-12

M68060 USER’S MANUAL

MOTOROLA

modifying the S-bit of the SR. After these instructions execute, the instruction pipeline is
flushed and is refilled from the appropriate address space.

The MC68060 integrates the functions of the integer unit, FPU, and MMU. The registers
depicted in the programming model (see Figure 1-2) provide operand storage and control
for these three units. The registers are partitioned into two levels of privilege modes: user
and supervisor. The user programming model is the same as the user programming model
of the MC68040, which consists of 16 general-purpose 32-bit registers, two control regis-
ters, eight 80-bit floating-point data registers, a floating-point control register, a floating-point
status register, and a floating-point instruction address register.

Only system programmers can use the supervisor programming model to implement oper-
ating system functions, I/O control, and memory management subsystems. This supervisor/

Figure 1-2. Programming Model

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0

D7
D6
D5
D4
D3
D2
D1
D0

31 0

DATA
REGISTERS

ADDRESS
REGISTERS

31 0

79 0

FP0
FP1
FP2
FP3
FP4
FP5
FP6
FP7

FPCR
FPSR
FPIAR

FLOATING-POINT
DATA

REGISTERS

FP CONTROL REGISTER
FP STATUS REGISTER

FP INSTRUCTION ADDRESS REGISTER

31 0

PCR
A7/SSP
SR
VBR
SFC
DFC
CACR
URP
SRP
TC
DTT0
DTT1
ITT0
ITT1
BUSCR

(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

PROCESSOR CONFIGURATION REGISTER
SUPERVISOR STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER

 USER ROOT POINTER REGISTER
SUPERVISOR ROOT POINTER REGISTER
TRANSLATION CONTROL REGISTER
DATA TRANSPARENT TRANSLATION REGISTER 0
DATA TRANSPARENT TRANSLATION REGISTER 1
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
BUS CONTROL REGISTER

USER STACK POINTER

15
0

Memory Management Unit

MOTOROLA M68060 USER’S MANUAL 4-27

The MMU replaces an invalid entry when the ATC stores a new address translation. When
all entries in an ATC set are valid, the ATC selects a valid entry to be replaced, using a
pseudo round robin replacement algorithm. A 2-bit counter, which is incremented for each
ATC access, points to the entry to replace when an access misses in the ATC. ATC hit rates
are application and page-size dependent, but hit rates ranging from 98% to greater than
99% can be expected. These high rates are achieved because the ATCs are relatively large
(64 entries) and utilization efficiency is high with 8-Kbyte and 4-Kbyte page sizes.

4.4 TRANSPARENT TRANSLATION
Four independent TTRs (DTT0 and DTT1 in the data MMU, ITT0 and ITT1 in the instruction
MMU) define four blocks of logical address space to be translated to physical address
space. These logical address spaces must be at least 16 Mbytes and can overlap or be sep-
arate. Each TTR can be disabled and completely ignored. The following description
assumes that the TTRs are enabled.

When an MMU receives an address to be translated, the privilege mode and the eight high-
order bits of the address are compared to the logical address spaces defined by the two
TTRs for the corresponding MMU. The logical address space for each TTR is defined by an
S-field, logical base address field, and logical address mask field. The S-field allows match-
ing either user or supervisor accesses or both accesses. When a bit in the logical address
mask field is set, the corresponding bit of the logical base address is ignored in the address
comparison. Setting successively higher order bits in the address mask increases the size
of the physical address space.

The address for the current bus cycle and a TTR address match when the privilege mode
and logical base address bits are equal. Each TTR can specify write protection for the block.
When write protection is enabled for a block, write or locked read-modify-write accesses to
the block are aborted.

By appropriately configuring a TTR, flexible transparent mappings can be specified (refer to
4.1.3 Transparent Translation Registers for field identification). For instance, to transpar-
ently translate the user address space, the S-field is set to $0, and the logical address mask
is set to $FF in both an instruction and data TTR. To transparently translate supervisor
accesses of addresses $00000000–$0FFFFFFF with write protection, the logical base
address field is set to $0x, the logical address mask is set to $0F, the W-bit is set to one,
and the S-field is set to $1. It is not necessary for the mask field to specify a contiguous block
of memory. The inclusion of independent TTRs in both the instruction and data MMUs pro-
vides an exception to the merged instruction and data address space, allowing different
translations for instruction and operand accesses. Also, since the instruction memory unit is
only used for instruction prefetches, different instruction and data TTRs can cause PC rela-
tive operand fetches to be translated differently from instruction prefetches.

If either of the TTRs matched during an access to a memory unit (either instruction or data),
the access is transparently translated. If both registers match, the TT0 status bits are used
for the access. Transparent translation can also be implemented by the translation tables of
the translation tables if the physical addresses of pages are set equal to their logical
addresses.

Memory Management Unit

4-28 M68060 USER’S MANUAL MOTOROLA

If the paged MMU is disabled (the E-bit in the TCR register is clear) and the TTRs are dis-
abled or do not match, then the status and protection attributes are defined by the default
translation bits (DCO, DUO, DWO, DCI, and DUI) in the TCR.

4.5 ADDRESS TRANSLATION SUMMARY
If the paged MMU is enabled (the E-bit in the TCR is set), the instruction and data MMUs
process translations by first comparing the logical address and privilege mode with the
parameters of the TTRs if they are enabled. If there is a match, the MMU uses the logical
address as a physical address for the access. If there is no match, the MMU compares the
logical address and privilege mode with the tag portions of the entries in the ATC and uses
the corresponding physical address for the access when a match occurs. When neither a
TTR nor a valid ATC entry matches, the MMU initiates a table search operation to obtain the
corresponding physical address from the translation table. When a table search is required,
the processor suspends instruction execution activity and, at the end of a successful table
search, stores the address mapping in the appropriate ATC and retries the access. The
MMU creates a valid ATC entry for the logical address. If the table search encounters an
invalid descriptor, or a write-protect for a write, or is a user access and encounters a super-
visor-only flag, then the access error exception is taken whenever the access is needed
(immediately for operands and deferred for instruction fetches).

If a write or locked read-modify-write access results in an ATC hit but the page is write pro-
tected, the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in memory and in the ATC; the access is retried. The
ATC provides the address translation for the access if the modified bit of the ATC entry is
set for a write or locked read-modify-write access to an unprotected page and if none of the
TTRs (instruction or data, as appropriate) match.

Figure 4-21 illustrates a general flowchart for address translation. The top branch of the flow-
chart applies to transparent translation. The bottom three branches apply to ATC translation.

4.6 RSTI AND MDIS EFFECT ON THE MMU
The following paragraph describes how the MMU is affected by the RSTI and MDIS pins.

4.6.1 Effect of RSTI on the MMUs
When the MC68060 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses to
be passed through as physical addresses, allowing an operating system to set up the trans-
lation tables and MMU registers as required. After the translation tables and registers are
initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the default TTR is used. The default TTR attribute bits are
cleared upon reset, so that immediately after assertion of RSTI the attributes will specify
write-through cachable mode, no write protection, user page attribute bits cleared, and 1/2-
cache mode disabled.

A reset of the processor does not invalidate any entries in the ATCs page size. A PFLUSH
instruction must be executed to flush all existing valid entries from the ATCs after a reset

Caches

5-14

M68060 USER’S MANUAL

MOTOROLA

5.9 STORE BUFFER

The MC68060 processor provides a four-entry store buffer (16 bytes maximum). This store
buffer is a FIFO buffer that can be used for deferring pending writes to imprecise pages to
maximize performance.

For operand writes destined for the store buffer, the operand execution pipeline incurs no
stalls. The store buffer effectively provides a measure of decoupling between the pipeline’s
ability to generate writes (one write per cycle maximum) and the ability of the system bus to
retire those writes (one write per two cycles minimum). When writing to imprecise pages,
only in the event the store buffer becomes full and there is a write operation in the EX cycle
of the operand execution pipeline will a stall be incurred.

If the store buffer is not utilized (store buffer disabled or cache inhibited, precise mode), sys-
tem bus cycles are generated directly for each pipeline write operation. The instruction is
held in the EX cycle of the operand execution pipeline (OEP) until bus transfer termination
is received. This means each write operation is stalled for a minimum of five cycles in the
EX cycle when the store buffer is not utilized.

A store buffer enable bit is contained in the CACR. This bit can be set and cleared via the
MOVEC instruction. Upon reset, this bit is cleared and all writes are precise. When the bit is
set, the cache mode generated by the MMU is used. The store buffer is utilized by the cach-
able/writethrough and the cache-inhibited/imprecise modes.

The store buffer can queue data up to four bytes in width per entry. Each entry matches a
corresponding bus cycle it will generate; therefore, a misaligned long-word write to a
writethrough page will create two entries if the address is to an odd word boundary, three
entries if to an odd byte boundary—one per bus cycle.

A misaligned write access which straddles a precise/imprecise page boundary will use the
store buffer for the imprecise portion of the write.

5.10 PUSH BUFFER AND STORE BUFFER BUS OPERATION

Once either the store buffer or the push buffer has valid data, the MC68060 bus controller
uses the next available bus cycle to generate the appropriate write cycles. In the event that
during the continued instruction execution by the processor pipeline another system bus
cycle is required (e.g., data cache miss to process, address translation cache (ATC)
tablesearch to perform), the pipeline will stall until both push and store buffers are empty
before generating the required system bus transaction.

Certain instructions and exception processing which synchronize the MC68060 processor
pipeline guarantee both push and store buffers are empty before proceeding.

5.11 BRANCH CACHE

The branch cache plays a major role in achieving the performance levels of the MC68060
processor. The branch cache provides a table associating branch program counter values
with the corresponding branch target virtual addresses. The fundamental concept is to pro-

Caches

MOTOROLA

M68060 USER’S MANUAL

5-15

vide a mechanism that allows the instruction fetch pipeline to detect and change instruction
streams before the change-of-flow instructions enter an operand execution pipeline.

The branch cache implementation is made up of a five-state prediction model based on past
execution history, in addition to the current program counter/branch target virtual address
association logic.

For each instruction fetch address generated, the branch cache is examined to see if a valid
branch entry is present. If there is not a branch cache hit, the instruction fetch unit continues
to fetch instructions sequentially. If a branch cache hit occurs indicating a “taken branch”,
the instruction fetch unit discards the current instruction steam and begins fetching at the
location indicated by the branch target address. As long as the branch cache prediction is
correct, which happens a very significant percentage of the time, the change-of-flow of the
instruction stream is “invisible” to the OEP and performance is maximized. If the branch
cache prediction is wrong, the internal pipelines are “cancelled” and the correct instruction
flow is established.

The branch cache must be cleared by the operating system on all context switches (using
the MOVEC to CACR instruction), because it is virtually-mapped.

The branch cache is automatically cleared by the hardware as part of any cache invalidate
(CINV) or any cache push and invalidate (CPUSH) instruction operating on the instruction
cache.

Programs that use the TRAPF instruction extension word as a possible branch target desti-
nation intefere with proper operation of the branch target cache, resulting in an access error
exception. This condition is indicated by the BPE bit in the FSLW of the access error stack.

5.12 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the integer unit. The following paragraphs discuss the operational details for the caches
and present state diagrams depicting the cache line state transitions.

5.12.1 Instruction Cache

The integer unit uses the instruction cache to store instruction prefetches as it requests
them. Instruction prefetches are normally requested from sequential memory locations
except when a change of program flow occurs (e.g., a branch taken) or when an instruction
that can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol that
allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the long word containing the instruc-
tion is places onto the internal instruction data bus. When an access misses in the cache,
the cache controller requests the line containing the required data from memory and places
it in the cache. If available, an invalid line is selected and updated with the tag and data from
memory. The line state then changes from invalid to valid by setting the V-bit. If all lines in
the set are already valid, a pseudo round-robin replacement algorithm is used to select one

Caches

5-19

M68060 USER’S MANUAL

MOTOROLA

Table 5-3. Data Cache Line State Transitions

Cache
Operation

Current State
Invalid Cases Valid Cases Dirty Cases

OPU Read
Miss (C,W)I1

Read line from memory
and update cache; Sup-
ply data to OPU; Go to
valid state.

(C,W)V1
Read new line from mem-
ory and update cache;
supply data to OPU; Re-
main in current state.

CD1

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Supply data
to OPU; Write push buffer
contents to memory; Go
to valid state.

OPU Read
Hit (C,W)I2 Not possible. (C,W)V2 Supply data to OPU; Re-

main in current state. CD2 Supply data to OPU; Re-
main in current state.

OPU Write
Miss

(Copyback
Mode)

CI3
Read line from memory
and update cache; Write
data to cache; Go to dirty
state.

CV3
Read new line from mem-
ory and update cache;
Write data to cache; Go
to dirty state.

CD3

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Write push
buffer contents to memo-
ry; Remain in current
state.

OPU Write
Miss

(Writethrou
gh Mode)

WI3 Write data to memory;
Remain in current state. WV3 Write data to memory;

Remain in current state.
WD
3

Write data to memory;
Remain in current state.

OPU Write
Hit (Copy-

back Mode)
CI4 Not possible. CV$ Write data to cache; Go

to dirty state. CD4 Write data to cache; Re-
main in current state.

OPU Write
Hit

(Writethrou
gh Mode)

WI4 Not possible. WV4
Write data to memory
and to cache; Remain in
current state.

WD
4

Push dirty cache line to
memory; Write data to
memory and to cache;
Go to valid state.

Cache In-
validate (C,W)I5 No action; Remain in cur-

rent state. (C,W)V5 No action; Go to invalid
state. CD5 No action (dirty data lost);

Go to invalid state.

Cache
Push (C,W)I6 No action; Remain in cur-

rent state. (C,W)V6 No action; Go to invalid
state. CD6

Push dirty cache line to
memory; Go to invalid
state or remain in current
state, depending on the
DPI bit the the CACR.

Alternate
Master

Snoop Hit
(C,W)I7 Not possible. (C,W)V7 No action; Go to invalid

state. CD7 No action (dirty data lost);
Go to invalid state.

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-5

6.1.3.1 FLOATING-POINT CONDITION CODE BYTE.

The FPCC byte (see Figure 6-4)
contains four condition code bits that are set at the end of all arithmetic instructions involving
the floating-point data registers. These bits are sign of mantissa (N), zero (Z), infinity (I), and
NAN. The FMOVE FPm,

<

ea

>

, FMOVEM FPm, and FMOVE FPCR instructions do not affect
the FPCC.

To aid programmers of floating-point subroutine libraries, the MC68060 implements the four
FPCC bits in hardware instead of only implementing the four IEEE conditions. An instruction
derives the IEEE conditions when needed. For example, the programmers of a complex
arithmetic multiply subroutine usually prefer to handle special data types, such as zeros,
infinities, or NANs, separately from normal data types. The floating-point condition codes
allow users to efficiently detect and handle these special values.

6.1.3.2 QUOTIENT BYTE.

The quotient byte (see Figure 6-5) provides compatibility with
the MC68881/MC68882. This byte is set at the completion of the modulo (FMOD) or IEEE
remainder (FREM) instruction, and contains the seven least significant bits of the unsigned
quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions.
For example, seven bits are more than enough to determine the quadrant of a circle in which
an operand resides. The quotient field (bits 22–16) remains set until the user clears it.

6.1.3.3 EXCEPTION STATUS BYTE.

The EXC byte (see Figure 6-6) contains a bit for each
floating-point exception that can occur during the most recent arithmetic instruction or move
operation. The start of most operations clears this byte; however, operations that cannot
generate floating-point exceptions (the FMOVEM and FMOVE control register instructions)
do not clear this byte. An exception handler can use this byte to determine which floating-
point exception(s) caused a trap.

Figure 6-4. Floating-Point Condition Code (FPSR)

Figure 6-5. Floating-Point Quotient Byte (FPSR)

N Z I NAN

31 30 29 28 27 26 25 24

NOT-A-NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

0

23 22 21 20 19 18 17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

S QUOTIENT

SIGN OF QUOTIENT

Floating-Point Unit

6-10

M68060 USER’S MANUAL

MOTOROLA

Table 6-6. Extended-Precision Real Format Summary

Data Format

Field Size (in Bits)

Sign (s)

1

Biased Exponent (e)

15

Zero, Reserved (u)

16

Explicit Integer Bit (j)

1

Mantissa (f)

63

Total

96

Interpretation of Unused Bits

Input

Don’t Care

Output

All Zeros

Interpretation of Sign

Positive Mantissa

s = 0

Negative Mantissa

s = 1

Normalized Numbers

Bias of Biased Exponent

+16383 ($3FFF)

Range of Biased Exponent

0 < = e < 32767 ($7FFF)

Explicit Integer Bit

1

Range of Mantissa

Zero or Nonzero

Mantissa (Explicit Integer Bit and Fraction)

1.f

Relation to Representation of Real Numbers

(–1)s

× 2e–16383 × j.f

Denormalized Numbers
Biased Exponent Format Minimum 0 ($0000)

Bias of Biased Exponent +16383 ($3FFF)

Explicit Integer Bit 0

Range of Mantissa Nonzero

Mantissa (Explicit Integer Bit and Fraction) 0.f

Relation to Representation of Real Numbers (–1)s × 2–16383 × 0.f

Signed Zeros
Biased Exponent Format Minimum 0 ($0000)

Mantissa (Explicit Integer Bit and Fraction) 0.0

Signed Infinities
Biased Exponent Format Maximum 32767 ($7FFF)

Explicit Integer Bit Don’t Care

Mantissa (Explicit Integer Bit and Fraction) x.000…0000

NANs
Sign Don’t Care
Explicit Integer Bit Don’t Care
Biased Exponent Format Maximum 32767 ($7FFF)
Mantissa Nonzero
Representation of Mantissa

Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Mantissa When Created by FPU

x.1xxxx…xxxx
x.0xxxx…xxxx
x.xxxxx…xxxx

1.11111…1111

s e f
95 94 80 79 64

u
62 0

j
63

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-47

When the processor recognizes a bus error condition for an access, the access is termi-
nated immediately. A line access that has TEA asserted for one of the four long-word trans-
fers aborts without completing the remaining transfers, regardless of whether the line
transfer uses a burst or burst-inhibited access.

When a bus cycle is terminated with a bus error, the MC68060 can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception. The instruction prefetch mechanism requests instruction words from the instruc-
tion memory unit before it is ready to execute them. If a bus error occurs on an instruction
fetch, the processor does not take the exception until it attempts to use the instruction.
Should an intervening instruction cause a branch or should a task switch occur, the access
error exception for the unused access does not occur. Similarly, if a bus error is detected on
the second, third, or fourth long-word transfer for a line read access, an access error excep-
tion is taken only if the execution unit is specifically requesting that long word. The line is not
placed in the cache, and the processor repeats the line access when another access refer-
ences the line. If a misaligned operand spans two long words in a line, a bus error on either
the first or second transfer for the line causes exception processing to begin immediately. A
bus error termination for any write access or read access that reference data specifically
requested by the execution unit causes the processor to begin exception processing imme-
diately. Refer to Section 8 Exception Processing for details of access error exception pro-
cessing.

When a bus error terminates an access, the contents of the corresponding cache can be
affected in different ways, depending on the type of access. For a cache line read to replace
a valid instruction or data cache line, the cache line is untouched if the replacement line read
terminates with a bus error. If a dirty data cache line is being replaced, the dirty line is placed
in the push buffer and is eventually written out to memory. This is done whether or not a bus
error occurs during the replacement line read. If any cache push results in a bus error ter-
mination, the cache push data is lost.

Write accesses to memory pages specified as cachable writethrough by the data memory
unit update the corresponding cache line before accessing memory. If a bus error occurs
during a memory access, the cache line remains valid with the new data. For noncachable
precise memory pages, the cache line is not updated if the write cycle terminates with a bus
error. Figure 7-37 illustrates a functional timing diagram of a bus error on a word write
access causing an access error exception. Figure 7-38 illustrates a functional timing dia-
gram of a bus error on a line read access that does not cause an access error exception.

In general, write cycles that result in bus error termination must be avoided. The MC68060
has write and push buffers to decouple the processor from the system. Before the processor
writes into the write and push buffers, access errors that result from address translation
cache (ATC) faults should have been reported via an access error exception and eventually
fixed by the access error handler. Since the instruction that reports the bus error on the write
cycle usually is not the instruction that causes the write, it is not possible to recover that write
cycle via an instruction restart. Although the fault address indicates the logical address of
the write cycle that incurred the bus error, the write data information is not available in the
access error stack. As such, this access error case is nonrecoverable unless the system is

Bus Operation

7-64 M68060 USER’S MANUAL MOTOROLA

Figure 7-42. MC68060-Arbitration Protocol State Diagram

AM
IMPLICIT

AM
EXPLICIT

SNOOP

IMPLICIT
OWN

F3

E4

E5

E6

F2

F1

E3

E2

E1

D5

D4

EXPLICIT
OWN

END
TENURE

RESET

A1

B1

B2

B3

B4

A3

A2

D3
D1

C1

C3

C2

D2G1

D

BTTBTTI

Q
BR

BTTO

BTTO THREE-STATE

IBR

BCLK

IBR
BR

BTTI
BTTO

BTT
BCLK

= INTERNAL BUS REQUEST SIGNAL
= EXTERNAL BUS REQUEST PIN
= INTERNAL BTT SAMPLED AS INPUT
= BTT DRIVEN INTERNALLY BY MC68060
= EXTERNAL BTT PIN
= VIRTUAL BUS CLOCK DERIVED FROM CLK AND CLKEN

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-67

Figure 7-44 illustrates a functional timing diagram for an arbitration of a relinquish and retry
operation (MC68040 acknowledge termination mode). In Figure 7-44, the processor read
access that begins in C1 is terminated at the end of C2 with a retry request and BG negated,
forcing the processor to relinquish the bus and allow the alternate master to access the bus.
Note that the processor re-asserts BR during C3 since the original access is pending again.
After alternate bus master ownership, the bus is granted to the processor to allow it to retry
the access beginning in C7.

Figure 7-45 is a functional timing diagram for implicit ownership of the bus.

Figure 7-46 illustrates the effect of BGR on bus arbitration activity during locked sequences.
When BGR is asserted while BG is negated, locked sequences can be broken. Otherwise,
the entire locked sequence of bus cycles are completed by the processor before relinquish-
ing the bus.

Figure 7-43. Processor Bus Request Timing

A31–A0

BCLK

BUS
ARBITRATION

STATE

D31–D0

TRANSFER
ATTRIBUTES

TS

TA

ALTERNATE
MASTER

PROCESSOR

BR

BG

BB

AM_BR*

AM_BG*

ALTERNATE
MASTER

C1 C2 C3 C4 C5 C8 C9C6 C7

*AM indicates the alternate bus master.

BTT

C10

AM-EX AM-EX AM-EX EX-OWN EX-OWN END-TEN AM-IMPEX-OWN EX-OWN AM-EX

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-5

9.1.2.2 LPSAMPLE.

The LPSAMPLE instruction provides identical functionality to the
SAMPLE/PRELOAD instruction described in 9.1.2.4 SAMPLE/PRELOAD with one excep-
tion: instead of sampling the system data and control signals present at the MC68060 input
pins, the LPSAMPLE instruction forces the LPSTOP isolation transistors into isolation state
so that it can be verified that they are present and interrupting the path from the signal pin
to the internal logic.The LPSAMPLE instruction becomes active on the falling edge of TCK
in the update-IR state when the data held in the instruction shift register is equivalent to a $1.

9.1.2.3 Private Instructions.

The set of private instructions labeled MFG-TEST1 through
MFG-TEST9 are reserved by Motorola for internal manufacturing use. These instructions
can change (remap) the pin I/O and pin functions as defined for system operation (some
input pins may become output pins and some output pins may become input pins). Use of
these instructions without proper understanding can result in potentially destructive opera-
tion of the MC68060. These instructions become active on the falling edge of TCK in the
update-IR state when the data held in the instructions shift register is equivalent to values
$2, $3, $8, $9, $A, $B, $C, $D, and $E.

9.1.2.4 SAMPLE/PRELOAD.

The SAMPLE/PRELOAD instruction provides two separate
functions. First, it provides a means to obtain a sample of the system data and control sig-
nals present at the MC68060 input pins and just prior to the boundary scan cell at the output
pins. This sampling occurs on the rising edge of TCK in the capture-DR state when an
instruction encoding of $4 is resident in the instruction register. The user can observe this
sampled data by shifting it through the boundary scan register to the output TDO by using
the shift-DR state. Both the data capture and the shift operation are transparent to system
operation. The user is responsible for providing some form of external synchronization to
achieve meaningful results since there is no internal synchronization between TCK and the
system clock, CLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary scan
register update cells before selecting EXTEST or CLAMP. This is accomplished by ignoring
the data being shifted out of the TDO pin while shifting in initialization data. The update-DR
state in conjunction with the falling edge of TCK can then be used to transfer this data to the
update cells. This data will be applied to the external output pins when one of the instructions
listed previously is applied.

9.1.2.5 IDCODE.

The IDCODE instruction selects the 32-bit idcode register for connection
as a shift path between the TDI pin and the TDO pin. This instruction allows the user to inter-
rogate the MC68060 to determine its JTAG version number and other part identification
data. The idcode register has been implemented in accordance with IEEE 1149.1 so that
the least significant bit of the shift register stage is set to logic one on the rising edge of TCK
following entry into the capture-DR state. Therefore, the first bit to be shifted out after select-
ing the idcode register is always a logic one (this is to differentiate a part that supports an
idcode register from a part that supports only the bypass register). The remaining 31-bits are
also set to fixed values (see

9.1.3.1 Idcode Register

) on the rising edge of TCK following
entry into the capture-DR state.

The IDCODE instruction is the default value placed in the instruction register when a JTAG
reset is accomplished by, either asserting TRST, or holding TMS high while clocking TCK

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-12

M68060 USER’S MANUAL

MOTOROLA

81 I.Pin XTEA Input
82 I.Pin XTA Input
83 O.Pin PST0 Output
84 O.Pin PST1 Output
85 O.Pin PST2 Output
86 IO.Ctl PST4–PST0, XBR ena —
87 O.Pin PST3 Output
88 O.Pin PST4 Output
89 O.Pin XSAS Output
90 IO.Ctl XSAS ena —
91 O.Pin XBTT I/O
92 IO.Ctl XBTT ena —
93 I.Pin XBTT I/O
94 O.Pin XTS I/O
95 I.Pin XTS ena —
96 I.Pin XTS I/O
97 O.Pin XTIP Output
98 IO.Ctl XTIP ena —
99 I.Pin XSNOOP Input
100 O.Pin XBB I/O
101 IO.Ctl XBB ena —
102 I.Pin XBB I/O
103 O.Pin XBR Output
104 IO.Ctl XLOCK, XLOCKE ena —
105 O.Pin XLOCK Output
106 O.Pin XLOCKE Output
107 O.Pin TLN0 Output
108 O.Pin SIZ0 Output
109 IO.Ctl TLN0,SIZ1–SIZ0,XR_W ena —
110 O.Pin SIZ1 Output
111 O.Pin XR_W Output
112 O.Pin TLN1 Output
113 O.Pin TM0 Output
114 IO.Ctl TLN1,TM2–TM0 ena —
115 O.Pin TM1 Output
116 O.Pin TM2 Output
117 O.Pin A0 I/O
118 I.Pin A0 I/O
119 O.Pin A1 I/O
120 I.Pin A1 I/O
121 IO.Ctl A1–A0 ena —
122 I.Pin XCLA —
123 O.Pin A2 I/O
124 I.Pin A2 I/O
125 O.Pin A3 I/O
126 I.Pin A3 I/O
127 IO.Ctl A3–A2 ena —
128 O.Pin A4 I/O
129 I.Pin A4 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-14

M68060 USER’S MANUAL

MOTOROLA

179 I.Pin D15 I/O
180 O.Pin D14 I/O
181 I.Pin D14 I/O
182 IO.Ctl D15–D12 ena —
183 O.Pin D13 I/O
184 I.Pin D13 I/O
185 O.Pin D12 I/O
186 I.Pin D12 I/O
187 O.Pin D11 I/O
188 I.Pin D11 I/O
189 O.Pin D10 I/O
190 I.Pin D10 I/O
191 IO.Ctl D11–D8 ena —
192 O.Pin D9 I/O
193 I.Pin D9 I/O
194 O.Pin D8 I/O
195 I.Pin D8 I/O
196 O.Pin D7 I/O
197 I.Pin D7 I/O
198 O.Pin D6 I/O
199 I.Pin D6 I/O
200 IO.Ctl D7–D4 ena —
201 O.Pin D5 I/O
202 I.Pin D5 I/O
203 O.Pin D4 I/O
204 I.Pin D4 I/O
205 O.Pin D3 I/O
206 I.Pin D3 I/O
207 O.Pin D2 I/O
208 I.Pin D2 I/O
209 IO.Ctl D3–D0 ena —
210 O.Pin D1 I/O
211 I.Pin D1 I/O
212 O.Pin D0 I/O
213 I.Pin D0 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-25

9.2.1 Debug Command Interface
Figure 9-10 illustrates the debug command interface and Table 9-4 outlines the pins needed
by the debug command interface. The debug command interface consists of a five-bit shift
register and a five-bit parallel register, with each register operating independently. To acti-
vate the debug command interface, JTAG must be driven negated. This allows the debug
command interface to take over the regular JTAG interface and remap JTAG pin functions.
The resulting interface is fully synchronous to the CLK input.

The commands enter the debug command interface through the PTDI serial input signal into
the five-bit shift register. The shift register is controlled by the PSHIFT input. The PSHIFT
signal determines which rising CLK edge contains valid data on the PTDI input. When
asserted the PSHIFT input causes data from the PTDI input to be latched and causes inter-
nal data bits already in the shift register to be passed on to the next shift register bit. Serial
data eventually shifts out through the PTDO output. PTDO can be used as a status output
and can be used to verify that the shift register is operating properly. Do not assert both PAP-
PLY and PSHIFT on the same CLK edge as this is interpreted as a “no operation”.

Figure 9-10. Debug Command Interface Schematic

Table 9-4. Debug Command Interface Pins
Pin Name Alias Description

TCK PSHIFT Serial Shift Enable
TMS PAPPLY Command Apply Enable
TDI PTDI Serial Command Data In

TRST PDISABLE Debug Command Disable
TDO PTDO Serial Command Data Out
JTAG JTAG JTAG or Debug Select
CLK CLK Clock

MC68060 CHIP BOUNDARY

CLK

CONTROLLER

TO ALL
FLIP-FLOPS

TCK (PSHIFT)

TDI (PTDI)

JTAG

D31–D0

A31–A0

 TMS (PAPPLY)

5-BIT
COMMAND

WORD

S
E
R
I
A
L

P
A
R
A
L
L
E
L

OEP
CONTROL LOGICCOMMAND

VALIDTRST (PDISABLE)

 TDO (PTDO)

BIT 4

BIT 0

Instruction Execution Timing

10-24 M68060 USER’S MANUAL MOTOROLA

10.15 FPU INSTRUCTION EXECUTION TIMES
Table 10-25 shows the number of clock cycles required for execution of the floating-point
instructions, including completion of the operation and storing of the result. The number of
operand read and write cycles is shown in parentheses (r/w).

1 For these entries, add the effective address calculation time.
2 For the CPUSH instruction, the operand write figure refers to line-sized transfers.

PLPA (ATC hit) — 15(0/0) — — —
PLPA (ATC miss) — 28(0/0) — — —
PFLUSH — 18(0/0) — — —
PFLUSHN — 18(0/0) — — —
PFLUSHAN — 33(0/0) — — —
PFLUSHA — 33(0/0) — — —
RESET — 520(0/0) — — —
STOP Word 8(0/0) — — —
SWAP Word 1(0/0) — — —
TRAPF — 1(0/0) — — —
TRAPcc — 1(0/0) — — —
TRAPV — 1(0/0) — — —
UNLK — 1(1/0) — — —
UNPK — 2(0/0) 2(1/1) — —

Table 10-25. Floating-Point Instruction Execution Times

Instruction
Effective Address, <ea>

FPn Dn (An) (An)+ –(An)
(d16,An)
(d16,PC)

(d8,An,Xi∗ SF)
(d8,PC,Xi∗ SF)

(bd,An,XI∗ SF)
(bd,PC,XI∗ SF)

(xxx).WL #<imm>

FABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FDABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FSABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FDADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FSADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FCMP 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FDDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FSDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FDMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FSMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FMOVE
FPy, — 3(0/0) 1(0/1) 1(0/1) 1(0/1) 1(1/0) 2(0/1) 3(0/1) 2(0/1) —

FMOVE
,FPCR — 8(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 8(1/0) 7(1/0) 7(0/0)

FMOVE
FPCR, — 4(0/0) 2(0/1) 2(0/1) 2(0/1) 2(1/0) 3(0/1) 4(0/1) 3(0/1) —

FINT 3(0/0) 4(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 5(1/0) 3(1/0) 3(0/0)
FINTRZ 3(0/0) 4(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 5(1/0) 3(1/0) 3(0/0)

Table 10-24. Miscellaneous Instruction Execution Times (Continued)
Instruction Size Register Memory Reg -> Dest Source -> Reg

Applications Information

11-14 M68060 USER’S MANUAL MOTOROLA

11.2.6 Clocking
For systems which have PCLK-to-BCLK skew controlled by a phase-locked-loop (PLL)
clock generator such as the 88915 or 88916, it is possible to connect the PCLK of the
MC68040 to the MC68060 CLK input as shown in Figure 11-8. Otherwise, the MC68060
CLK must be generated by an 88915 PLL as shown in Figure 11-9.

Appropriate generation of the CLKEN signal to enable 1/2-speed operation is easily
achieved by delaying the MC68040 BCLK by 5 ns before feeding it into the CLKEN input of
the MC68060.

Be aware that a clock skew exists between CLK and BCLK. The MC88915 can only control
the skew to within 1 ns. Figure 11-10 shows the relationship between BCLK and CLKEN.

11.2.7 PSTx Encoding
PSTx signal encoding is different between the MC68060 and MC68040. This should not
affect normal applications because PSTx signals are not used for bus control logic.

Figure 11-8. Simple CLK Generation

Figure 11-9. Generic CLK Generation

BCLK
CLKEN

CLK

MC68060

MC68040
EXISTING

SYSTEM

VIRTUAL MC68040

5 NS

PCLK

BCLK

CLKENQ0

2XQ

SYNC0

CLK

MC68060
MC68040
EXISTING

SYSTEM

FEEDBACK

VIRTUAL MC68040

5 ns

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-9

C.2.3 Module 2: Unimplemented Integer Instruction Library
(MC68060ILSP)

The M68060SP provides a library version of the following unimplemented integer instruc-
tions: 64-bit divide, 64-bit multiply, and CMP2. This version can be compiled with user appli-
cations desiring the functionality of these instructions. Using the library method, an
application does not have to incur the overhead of the unimplemented integer instruction
exception.

The routines are System V ABI compliant. Currently, the arguments are expected on the
stack by the M68060SP library routines. For _divu64, _divs64, _mulu64, and _muls64, the
results are not returned in a pair of data registers as with the actual instructions, but rather
in a two-long-word memory array pointed to by a pointer argument provided by the caller.

* _real_cas(), _real_cas2(): MC68060ISP Call-out to provide choice
* of using supplied _isp_cas() and _isp_cas2() routines or to
* write an alternate routine more fitted for the system.

* _isp_cas(), _isp_cas2(): CAS and CAS2 core routine entry point that
* can be called from _real_cas() and _real_cas2() if the system wishes
* to use the CAS and CAS2 emulation code provided with the package.
* The flow is:
* (exception) -> _isp_unimp -> _real_cas{2) -> _isp_cas{2}

* _isp_cas_inrange(): Subroutine entry point provided by the 68060ISP
* for use by the access error handler that reports if a given
* address resides within the _isp_cas() or _isp_cas2() routines.
* Inputs:
* a0 = instruction address in question
* Outputs:
* d0 = 0 -> success; non-zero -> failure

* _isp_cas_terminate(): Entry point provided by the MC68060ISP for
* use by an access error handler to create an access error frame for
* a process and to exit the CAS or CAS2 emulation gracefully.
* Inputs:
* a0 = faulting address
* d0 = Fault Status Longword

* _isp_cas_restart(): Entry point provided by the 68060ISP for use
* by an access error handler to re-start _isp_cas() and _isp_cas2()
* if a recoverable bus error occurs within the _isp_cas() and _isp_cas2()
* routines.

* _isp_cas_finish(), _isp_cas2_finish(): Entry point provided by the
* MC68060ISP for use by system-specific implementations of cas. Enter
* here to exit gracefully through the package.
* The flow is:
* (exception) ->_isp_unimp -> _real_cas{2} -> (new code)
* -> _isp_cas{2}_finish
* This requires close examination of the _isp_cas() and _isp_cas2() source
* code.

Figure C-4. CAS and CAS2 Call-Outs and Entry Points

MC68060 Instructions

D-12

M68060 USER’S MANUAL

MOTOROLA

CPUSH

Push and Possibly Invalidate Cache Line

CPUSH

(MC68060, MC68LC060, MC68EC060)

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Cache field—Specifies the Cache.
00—No Operation
01—Data Cache
10—Instruction Cache
11—Data and Instruction Caches

Scope field—Specifies the Scope of the Operation.
00—Illegal (causes illegal instruction trap)
01—Line
10—Page
11—All

Register field—Specifies the address register for line and page operations. For line
operations, the low-order bits 3–0 of the address are don’t care. Bits 11–0 or 12–0 of
the address are don’t care for 4K-byte or 8K-byte page operations, respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 1 SCOPE REGISTER

