
Motorola - MC68EC060RC75 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 75MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68ec060rc75

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec060rc75-4468476
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

List of Tables

xxiv

M68060 USER’S MANUAL

MOTOROLA

7-7 MC68040-Arbitration Protocol State Description ... 7-56
7-8 MC68060-Arbitration Protocol State Transition Conditions.............................. 7-62
7-9 MC68060-Arbitration Protocol State Description ... 7-63
7-10 Special Mode vs. IPLx Signals... 7-74
8-1 Exception Vector Assignments .. 8-4
8-2 Interrupt Levels and Mask Values.. 8-12
8-3 Exception Priority Groups .. 8-17
9-1 JTAG States... 9-2
9-2 JTAG Instructions... 9-4
9-3 Boundary Scan Bit Definitions.. 9-10
9-4 Debug Command Interface Pins .. 9-25
9-5 Command Summary .. 9-28
10-1 Superscalar OEP Dispatch Test Algorithm .. 10-4
10-2 MC68060 Superscalar Classification of M680x0 Integer Instructions.............. 10-4
10-3 Superscalar Classification of M680x0 Privileged Instructions.......................... 10-7
10-4 Superscalar Classification of M680x0 Floating-Point Instructions 10-7
10-5 Effective Address Calculation Times.. 10-14
10-6 Move Byte and Word Execution Times .. 10-15
10-7 Move Long Execution Times.. 10-15
10-8 MOVE16 Execution Times ... 10-15
10-9 Standard Instruction Execution Time ... 10-16
10-10 Immediate Instruction Execution Times ... 10-17
10-11 Single-Operand Instruction Execution Times... 10-18
10-12 Clear (CLR) Execution Times .. 10-18
10-13 Shift/Rotate Execution Times... 10-19
10-14 Bit Manipulation (Dynamic Bit Count) Execution Times................................. 10-19
10-15 Bit Manipulation (Static Bit Count) Execution Times...................................... 10-20
10-16 Bit Field Execution Times... 10-20
10-17 Branch Execution Times .. 10-21
10-18 JMP, JSR Execution Times.. 10-21
10-19 Return Instruction Execution Times ... 10-21
10-20 LEA, PEA, and MOVEM Instruction Execution Times 10-22
10-21 Multiprecision Instruction Execution Times .. 10-22
10-22 Status Register (SR) Instruction Execution Times ... 10-23
10-23 MOVES Execution Times... 10-23
10-24 Miscellaneous Instruction Execution Times ... 10-23
10-25 Floating-Point Instruction Execution Times.. 10-24
10-26 Exception Processing Times.. 10-26
11-1 With Heat Sink, No Air Flow... 11-18
11-2 With Heat Sink, with Air Flow ... 11-18
11-3 No Heat Sink .. 11-19
11-4 Support Devices and Products... 11-20
C-1 Call-Out Dispatch Table and Module Size ...C-4
C-2 FPU Comparison..C-12
C-3 Unimplemented Instructions...C-13

Signal Description

2-16 M68060 USER’S MANUAL MOTOROLA

state on the rising edge of CLK regardless of the state of the CLKEN) only on those rising
edges of CLK which are spanned by the assertion of CLKEN.

CLKEN may be used to allow the external bus to run at 1/2 or 1/4 the speed of the MC68060
processor clock which controls all internal operations. The MC68060 bus interface controller
will not detect those rising edges of CLK which are spanned with the negation of CLKEN.
To operate the external bus at 1/2 or 1/4 the speed of CLK, CLKEN must be asserted and
stable during the rising edges of CLK which coincide with the system clock running at 1/2 or
1/4 the frequency of the MC68060 processor clock. CLKEN must be negated and stable dur-
ing all other rising CLK edges.

For full speed operation of the MC68060 processor, CLKEN must be continuously asserted.

Refer to Section 7 Bus Operation for more information on the MC68060 bus interface and
controller. Refer to Section 12 Electrical and Thermal Characteristics for the timing spec-
ifications of CLK and CLKEN.

2.11 TEST SIGNALS
The MC68060 includes dedicated user-accessible test logic that is fully compatible with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems asso-
ciated with testing high-density circuit boards have led to the development of this standard
under the IEEE Test Technology Committee and Joint Test Action Group (JTAG) sponsor-
ship. The MC68060 implementation supports circuit board test strategies based on this
standard. However, the JTAG interface is not intended to provide an in-circuit test to verify
MC68060 operations; therefore, it is impossible to test MC68060 operations using this inter-
face. Section 9 IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes describes the
MC68060 implementation of IEEE 1149.1 and is intended to be used with the supporting
IEEE document.

2.11.1 JTAG Enable (JTAG)
This input signal is used to select between 1149.1 operation and debug emulation mode.
The 1149.1 test access port (TAP) pins are remapped to emulation mode functions when
this pin is negated. For normal 1149.1 operation, JTAG should be grounded.

2.11.2 Test Clock (TCK)
This input signal is used as a dedicated clock for the test logic. Since clocking of the test
logic is independent of the normal operation of the MC68060, several other components on
a board can share a common test clock with the processor even though each component
may operate from a different system clock. The design of the test logic allows the test clock
to run at low frequencies, or to be gated off entirely as required for test purposes. TCK
should be grounded if it is not used and emulation mode is not to be used.

2.11.3 Test Mode Select (TMS)
This input signal is decoded by the TAP controller and distinguishes the principal operations
of the test support circuitry. TMS should be tied to VCC if it is not used and emulation mode
is not to be used.

Memory Management Unit

4-8

M68060 USER’S MANUAL

MOTOROLA

descriptor, can be used when two or more logical addresses access a single page descrip-
tor.

The table search uses logical addresses to access the translation tables. Figure 4-7 illus-
trates a logical address format, which is segmented into four fields: root index (RI), pointer
index (PI), page index (PGI), and page offset. The first three fields extracted from the logical
address index the base address for each table level. The seven bits of the logical address
RI field are multiplied by 4 or shifted to the left by two bits. This sum is concatenated with
the upper 23 bits of the appropriate root pointer (URP or SRP) to yield the physical address
of a root-level table descriptor. Each of the 128 root-level table descriptors corresponds to
a 32-Mbyte block of memory and points to the base of a pointer-level table.

The seven bits of a logical address PI field are multiplied by 4 (shifted to the left by two bits)
and concatenated with the fetched root-level descriptor’s upper 23 bits to produce the phys-
ical address of the pointer-level table descriptor. Each of the 128 pointer-level table descrip-
tors corresponds to a 256-Kbyte block of memory.

Figure 4-6. Translation Table Structure

Figure 4-7. Logical Address Format

ROOT POINTER

PAGE
TABLES

FIRST
LEVEL

SECOND
LEVEL

THIRD
LEVEL

POINTER
TABLES

ROOT
TABLES

7 BITS

31 25 24 18 17 13 12 11 0

7 BITS
8K PAGE
4K PAGE

13 BITS - 8K PAGE
12 BITS - 4K PAGE

ROOT INDEX FIELD
(RI)

POINTER INDEX FIELD
(PI)

PAGE INDEX FIELD
(PGI)

PAGE OFFSET

Caches

5-8

M68060 USER’S MANUAL

MOTOROLA

5.4.1.1 WRITETHROUGH MODE.

Accesses to pages specified as writethrough are always
written to the external address, although the cycle can be buffered (depending on the state
of the ESB bit in the CACR). Writes in writethrough mode are handled with a no-write-allo-
cate policy—i.e., writes that miss in the data cache are written to memory or the write buffer,
but do not cause the corresponding line in memory to be loaded into the cache. Write
accesses that hit always write through to memory and update matching cache lines. Spec-
ifying writethrough mode for the shared pages maintains cache coherency for shared mem-
ory areas in a multiprocessing environment. The cache supplies data to instruction or data
read accesses that hit in the appropriate cache; misses cause a new cache line to be loaded
into the cache, unless no-allocate mode is selected (NAD or NAI is set) via the CACR.

5.4.1.2 COPYBACK MODE.

Copyback pages are typically used for local data structures or
stacks to minimize external bus usage and reduce write access latency. Write accesses to
pages specified as copyback that hit in the data cache update the cache line and set the
corresponding D-bit without an external bus access. The dirty cached data is only written to
memory if the line is replaced due to a miss, or a writethrough or cache-inhibited access
which hits the dirty line, or a CPUSH which pushes the line. If a write access misses in the
cache, then the needed cache line is read from memory and the cache is updated if the NAD
bit in the CACR is clear. If a write miss occurs when the NAD bit is set, the cache is not
updated. When a miss causes a dirty cache line to be selected for replacement, the current
cache line data is moved to the push buffer. The replacement line is read into the cache, and
the push buffer contents are written to external memory.

5.4.2 Cache-Inhibited Accesses

Address space regions containing targets such as I/O devices and shared data structures
in multiprocessing systems can be designated cache inhibited. If a page descriptor’s CM
field indicates precise or imprecise, then the access is cache inhibited. The caching opera-
tion is identical for both cache-inhibited modes. The difference between these inhibited
cache modes has to do with recovery from an exception (either external bus error, or inter-
rupt).

If the CM field of a matching address indicates either precise or imprecise modes, the cache
controller bypasses the cache and performs an external bus transfer. The data associated
with the access is not cached internally, and the cache inhibited out (CIOUT) signal is
asserted during the bus cycle to indicate to external memory that the access should not be
cached. If the data cache line is already resident in an internal cache and the current cache
mode for that page becomes cache inhibited, either through an operating system change,
or due to a shared physical page, then the caches provide additional support for cache
coherency, by pushing the line if dirty or invalidating the line if it is valid.

If the CM field indicates precise mode, then the sequence of read and write accesses to the
page is guaranteed to match the sequence of the instruction order. In imprecise mode, the
operand pipeline allows read accesses that hit in the cache to occur before completion of a
pending write from a previous instruction. Writes will not be deferred past operand read
accesses that miss in the cache (i.e. that must be read from the bus). Precise operation
forces operand read accesses for an instruction to occur only once by preventing the instruc-
tion from being interrupted after the operand fetch stage. Otherwise, if not in precise mode

Caches

5-14

M68060 USER’S MANUAL

MOTOROLA

5.9 STORE BUFFER

The MC68060 processor provides a four-entry store buffer (16 bytes maximum). This store
buffer is a FIFO buffer that can be used for deferring pending writes to imprecise pages to
maximize performance.

For operand writes destined for the store buffer, the operand execution pipeline incurs no
stalls. The store buffer effectively provides a measure of decoupling between the pipeline’s
ability to generate writes (one write per cycle maximum) and the ability of the system bus to
retire those writes (one write per two cycles minimum). When writing to imprecise pages,
only in the event the store buffer becomes full and there is a write operation in the EX cycle
of the operand execution pipeline will a stall be incurred.

If the store buffer is not utilized (store buffer disabled or cache inhibited, precise mode), sys-
tem bus cycles are generated directly for each pipeline write operation. The instruction is
held in the EX cycle of the operand execution pipeline (OEP) until bus transfer termination
is received. This means each write operation is stalled for a minimum of five cycles in the
EX cycle when the store buffer is not utilized.

A store buffer enable bit is contained in the CACR. This bit can be set and cleared via the
MOVEC instruction. Upon reset, this bit is cleared and all writes are precise. When the bit is
set, the cache mode generated by the MMU is used. The store buffer is utilized by the cach-
able/writethrough and the cache-inhibited/imprecise modes.

The store buffer can queue data up to four bytes in width per entry. Each entry matches a
corresponding bus cycle it will generate; therefore, a misaligned long-word write to a
writethrough page will create two entries if the address is to an odd word boundary, three
entries if to an odd byte boundary—one per bus cycle.

A misaligned write access which straddles a precise/imprecise page boundary will use the
store buffer for the imprecise portion of the write.

5.10 PUSH BUFFER AND STORE BUFFER BUS OPERATION

Once either the store buffer or the push buffer has valid data, the MC68060 bus controller
uses the next available bus cycle to generate the appropriate write cycles. In the event that
during the continued instruction execution by the processor pipeline another system bus
cycle is required (e.g., data cache miss to process, address translation cache (ATC)
tablesearch to perform), the pipeline will stall until both push and store buffers are empty
before generating the required system bus transaction.

Certain instructions and exception processing which synchronize the MC68060 processor
pipeline guarantee both push and store buffers are empty before proceeding.

5.11 BRANCH CACHE

The branch cache plays a major role in achieving the performance levels of the MC68060
processor. The branch cache provides a table associating branch program counter values
with the corresponding branch target virtual addresses. The fundamental concept is to pro-

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-11

NOTE: EXP3 is generated only during an FMOVE OUT if the source is too large to be represented
with a three-digit exponent. Otherwise, it is a don’t care.

6.3 COMPUTATIONAL ACCURACY
Whenever an attempt is made to represent a real number in a binary format of finite preci-
sion, there is a possibility that the number can not be represented exactly. This is commonly
referred to as a round-off error. Furthermore, when two inexact numbers are used in a cal-
culation, the error present in each number is reflected, and possibly aggravated, in the
result. All FPU calculations use an intermediate result. When the MC68060 performs an
operation, the calculation is carried out using extended-precision inputs, and the intermedi-
ate result is calculated as if to produce infinite precision. After the calculation is complete,
the intermediate result is rounded to the selected precision and stored in the destination.

The FPCR RND and PREC encodings (see Table 6-1 and Table 6-2) provide emulation for
devices that only support single and double precision. By setting the rounding precision to
single, the MC68060 will perform all calculations as if only 24 bits of precision were available
for the result. Setting the rounding precision to double does the same to 53 bits of precision.
The execution speed of all instructions is the same whether using single- or double-precision
rounding. When using these two forced rounding precisions, the MC68060 produces the
same results as any other device that conforms to the IEEE 754 standard, but does not sup-
port extended precision. The results are the same when performing the same operation in
extended precision and storing the results in single- or double-precision format.

Approximate Ranges

Maximum Positive Normalized 1.2 × 104932

Minimum Positive Normalized 1.7 × 10–4932

Minimum Positive Denormalized 1.7 × 10–4951

Table 6-7. Packed Decimal Real Format Summary

Data Type SM SE Y Y
3-Digit

Exponent
1-Digit
Integer

16-Digit Fraction

±Infinity 0/1 1 1 1 $FFF $XXXX $00…00

±NAN 0/1 1 1 1 $FFF $XXXX Nonzero

±SNAN 0/1 1 1 1 $FFF $XXXX Nonzero

+Zero 0 0/1 X X $000–$999 $XXX0 $00…00

–Zero 1 0/1 X X $000–$999 $XXX0 $00…00
+In-Range 0 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

–In-Range 1 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

Table 6-6. Extended-Precision Real Format Summary (Continued)

SM SE Y Y EXP2 (EXP3) INTEGERX X X X X X X XEXP1 EXP0

FRAC15 FRAC8

FRAC7 FRAC0

95 64

63 32

31 0

FRAC14 FRAC13 FRAC12 FRAC11 FRAC10 FRAC9

FRAC6 FRAC5 FRAC4 FRAC3 FRAC2 FRAC1

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-11

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and write
cycles. The table confirms that alignment significantly affects bus cycle throughput for non-
cachable accesses. For example, in Figure 7-9 the misaligned long-word operand took three
bus cycles because the byte offset = $1. If the byte offset = $0, then it would have taken one

Figure 7-11. Misaligned Long-Word Read Bus Cycle Timing

A31–A2

BCLK

SIZ1–SIZ0

D31–D24

TS

TIP

TA

A1–A0

D23–D16

D15–D8

D7–D0

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE
READ

WORD
READ

BYTE
READ

R/W

C1 C2 C1 C2 C1 C2

BYTE WORD BYTE

1 2 0

MISCELLANEOUS
 ATTRIBUTES

BS0

BS1

BS2

BS3

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-19

asserted. The registered data and the value of TCI are then passed to the appropriate
memory unit.
If TBI was negated with the assertion of TA, the processor continues the cycle with C3.
Otherwise, if TBI was asserted, the line transfer is burst inhibited, and the processor reads
the remaining three long words using long-word read bus cycles. The processor incre-
ments A3 and A2 for each read, and the new address is placed on the address bus for
each bus cycle. Refer to 7.7.1 Byte, Word, and Long-Word Read Transfer Cycles for
information on long-word reads. If no wait states are generated, a burst-inhibited line read
completes in eight clocks instead of the five required for a burst read.

Clock 3 (C3)
The processor holds the address and transfer attribute signals constant during C3 if CLA
is negated. The selected device must either increment A3 and A2 to reference the next
long word to transfer, place the data on the data bus, and assert TA, or alteratively assert
the CLA input to request the processor to increment A3 and A2. Refer to 7.7.7 Using CLA
to Increment A3 and A2 for details on CLA operation.
As in the description of C2, using acknowledge termination ignore state capability, the pro-
cessor ignores any termination signal, such as TA, until a user-programmable number of
BCLK edges has expired. And, as in the description in C2, SAS indicates the first BCLK
rising edge in which acknowledge termination signals become significant. If this mode is
disabled, SAS stays asserted in C3 to indicate that the processor will sample TA immedi-
ately. Refer to 7.14.1 Acknowledge Termination Ignore State Capability for details on
this mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA and registers the current value on the data bus at the end
of C3. If TA is asserted, the transfer terminates and the second long word of data is
passed to the appropriate memory unit. If TA is not recognized asserted at the end of C3,
the processor ignores the latched data and inserts wait states instead of terminating the
transfer. The processor continues to sample TA on successive rising edges of BCLK until
it is recognized asserted. The registered data is then passed to the appropriate memory
unit.

Clock 4 (C4)
This clock is identical to C3 except that once TA is recognized asserted, the registered
value corresponds to the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once TA is recognized, the registered value cor-
responds to the fourth long word of data for the burst. After the processor recognizes the
last TA assertion and terminates the line read bus cycle, TIP remains asserted if the pro-
cessor is ready to begin another bus cycle. Otherwise, the processor negates TIP during
the next clock.
Figure 7-16 and Figure 7-17 illustrate a flowchart and functional timing diagram for a
burst-inhibited line read bus cycle.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-63

The MC68060 can be in any one of seven bus arbitration states during bus operation: reset,
AM-implicit own, AM-explicit own, snoop, implicit ownership, explicit ownership, and the end
tenure state.

The reset state is entered whenever RSTI is asserted in any bus arbitration state, except the
explicit ownership state. For that state, the end tenure state is entered prior to entering the
reset state.This is done to ensure other bus masters are capable of taking the bus away from
the processor when it is reset. When RSTI is negated, the processor proceeds to the implicit
ownership state or alternate master implicit ownership state, depending on BG. If an alter-
nate master asserts TS or has asserted TS in the past, the processor waits for BTT to assert
(or alternatively for BB to go from being asserted to being negated) before taking the bus,
even though BG may be asserted to the processor.

The AM-implicit own state denotes the MC68060 does not have ownership (BG negated) of
the bus and is not in the process of snooping an access, and the alternate has not begun its
tenure by asserting TS (alternate master TS or SNOOP negated). In the AM-implicit own
state, the MC68060 does not drive the bus. The processor enters the AM-explicit own state
when TS is asserted by the alternate master. Once in the AM-explicit own state, the proces-
sor waits for the alternate master to assert BTT before recognizing that a change of tenure
has occurred. If BG is negated when BTT is asserted, the processor assumes that another
master has taken implicit ownership of the bus. Otherwise, if BG is asserted when BTT is
asserted, the processor assumes implicit ownership of the bus.

If an alternate master loses bus ownership when it is in implicit ownership state, the proces-
sor checks TS. If TS is sampled asserted, the processor interprets this as the alternate mas-
ter transitioning to its explicit ownership state, and it does not take bus ownership. This
operation is different from that of the MC68040 in that external arbiters are required to check
for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal.

Table 7-9. MC68060-Arbitration Protocol State Description
BTTO Bus Status Own State

Not Driven Not Driven No Reset
Not Driven Not Driven No Alternated Master Implicit Own
Not Driven Not Driven No Alternate Master Explicit Own
Not Driven Not Driven Yes Implicit Ownership
Not Driven Driven Yes Explicit Ownership
Asserted for One
BCLK, Negated for
One BCLK then
Three-Stated

Stops Being
Driven at End
of State

Yes End Tenure

Not Driven Not Driven No Alternate Master Own and Snooped
NOTE: BTTO represents the component of BTT as driven by the MC68060. BTT is normal-
ly three-stated but driven for one BCLK when asserted and one BCLK when negated.

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-7

since an RTE or FRESTORE instruction can check for residency and trap before restoring
the state.

A special case exists for systems that allow arbitration of the processor bus during locked
transfer sequences. If the arbiter can signal a bus error of a locked translation table update
due to an improperly broken lock, any pages touched by exception stack operations must
have the U-bit set in the corresponding page descriptor to prevent the occurrence of the
locked access during translation table searches.

8.2.2 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. An odd address is defined as an address in which the least significant
bit is set. Some of the ways an address error exception is taken is as follows: RTS, RTD,
RTR, or RTE in which the PC value in the stack is odd; a branch (conditional or uncondi-
tional), jump, or subroutine call in which the branch target address is odd; and an odd vector
table entry (e.g., an odd reset vector).

A stack frame of type 2 is generated when this exception is reported.The stacked PC con-
tains the address of the instruction that caused the address error. The address field in the
stack contains the branch target address with A0 cleared.

If an address error occurs during the exception processing for a bus error, address error, or
reset, a double bus fault occurs. The processor enters the halted state as indicated by the
PST4–PST0 encoding $1C. In this case, the processor does not attempt to alter the current
state of memory. Only an external reset can restart a processor halted by a double bus fault.

8.2.3 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP #n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, and CHK instructions force exceptions if the user program detects an
error, which can be an arithmetic overflow or a subscript value that is out of bounds. The
DIVS and DIVU instructions force exceptions if a division operation is attempted with a divi-
sor of zero.

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies
the SR, enters the supervisor mode, and clears the T-bit. The processor generates a vector
number according to the instruction being executed. Vector 5 is for DIVx, vector 6 is for CHK,
and vector 7 is for TRAPcc and TRAPV instructions. For the TRAP #n instruction, the vector
number is 32 plus n. The stack frame saves the trap vector offset, the PC, and the internal
copy of the SR on the supervisor stack.

A stack frame of type 0 is generated when a TRAP #n exception is taken. The saved value
of the PC is the logical address of the instruction following the instruction that caused the
trap. Instruction execution resumes at the address in the exception vector after the required
instruction is prefetched.

Exception Processing

8-8

M68060 USER’S MANUAL

MOTOROLA

For all instruction traps other than TRAP #n, a stack frame of type 2 is generated. The
stacked PC contains the logical address of the next instruction to be executed. In addition
to the stacked PC, a pointer to the instruction that caused the trap is saved in the address
field of the stack frame. Instruction execution resumes at the address in the exception vector
after the required instruction is prefetched.

8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions

There are eight unimplemented instruction exceptions: unimplemented integer, unimple-
mented effective address, unimplemented A-line, unimplemented F-line, floating-point dis-
abled, floating-point unimplemented instruction, floating-point unsupported data type, and
illegal instruction.

The unimplemented integer exception corresponds to vector number 61 and occurs when
the processor attempts to execute an instruction that contains a quad word operand (MULx
producing a 64-bit product and DIVx using a 64-bit dividend), CAS2, CHK2, CMP2, CAS
with a misaligned operand, and the MOVEP instruction. A stack frame of type 0 is generated
when this exception is reported. The stacked PC points to the logical address of the unim-
plemented integer instruction that caused the exception.

The unimplemented effective address exception corresponds to vector number 60, and
occurs when the processor attempts to execute any floating-point instruction that contains
an extended precision immediate source operand (F<op>, #imm,FPx), when the processor
attempts to execute an FMOVEM.L #imm,<control register list> instruction of more than one
floating-point control register (FPCR, FPSR, FPIAR), when the processor attempts an
FMOVEM.X instruction using a dynamic register list (FMOVEM.X Dn,<ea> or FMOVEM.X,
<ea>,Dn). The stack frame of type 0 is generated when this exception is reported. The
stacked PC points to the logical address of the instruction that caused the exception. The
FPIAR is unaffected. Refer to

Section 6 Floating-Point Unit

 for details.

An unimplemented A-line exception corresponds to vector number 10 and occurs when an
instruction word pattern begins (bits 15–12) with $A. The A-line opcodes are user-reserved,
and Motorola will not use any A-line instructions to extend the instruction set of any of Motor-
ola’s processors. A stack frame of format 0 is generated when this exception is reported.
The stacked PC points to the logical address of the A-line instruction word.

A floating-point unsupported data type exception occurs when the processor attempts to
execute a bit pattern that it recognizes as an MC68881 instruction, the floating-point unit
(FPU) is enabled via the processor configuration register (PCR), the floating-point instruc-
tion is implemented, but the floating-point data type is not implemented in the MC68060
FPU. This exception corresponds to vector number 55. A stack frame of type 0, 2, or 3 is
generated when this exception is reported. The stacked PC points to the logical address of
next instruction after the floating-point instruction. Refer to

Section 6 Floating-Point Unit

for details.

A floating-point unimplemented instruction exception occurs when the processor attempts
to execute an instruction word pattern that begins with $F, the processor recognizes this bit
pattern as an MC68881 instruction, the FPU is enabled via the PCR, but the floating-point
instruction is not implemented in the MC68060 FPU. This exception corresponds to vector

Exception Processing

8-12

M68060 USER’S MANUAL

MOTOROLA

When the MC68060 executes one of the breakpoint instructions, it performs a breakpoint
acknowledge cycle (read cycle) with an acknowledge transfer type (TT=$3) and transfer
modifier value of $0. Refer to

Section 7 Bus Operation

 for a description of the breakpoint
acknowledge cycle. After external hardware terminates the bus cycle with either TA or TEA,
the processor performs illegal instruction exception processing. Refer to

8.2.4 Illegal
Instruction and Unimplemented Instruction Exceptions

 for details on illegal instruction
exception processing.

8.2.9 Interrupt Exception

When a peripheral device requires the services of the MC68060 or is ready to send informa-
tion that the processor requires, it can signal the processor to take an interrupt exception
using the IPLx signals. The three signals encode a value of 0–7 (IPL0 is the least significant
bit). High levels on all three signals correspond to no interrupt requested (level 0). Values
1–7 specify one of seven levels of interrupts, with level 7 having the highest priority. Table
8-2 lists the interrupt levels, the states of IPLx that define each level, and the SR interrupt
mask value that allows an interrupt at each level.

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10–8), the processor makes the request a pending interrupt. Priority level 7,
the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by the
interrupt priority mask, and they are transition sensitive. The processor recognizes an
interrupt request each time the external interrupt request level changes from some lower
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the MC68060 processes a
level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering the
handler routine so that subsequent level 6 interrupts and lower level interrupts are masked.
Provided no instruction that lowers the mask value is executed, the external request can be
lowered to level 3 and then raised back to level 6 and a second level 6 interrupt is not
processed. However, if the MC68060 is handling a level 7 interrupt (SR mask set to level 7)
and the external request is lowered to level 3 and than raised back to level 7, a second level
7 interrupt is processed. The second level 7 interrupt is processed because the level 7
interrupt is transition sensitive. A level comparison also generates a level 7 interrupt if the
request level and mask level are at 7 and the priority mask is then set to a lower level (as

Table 8-2. Interrupt Levels and Mask Values

Requested
Interrupt Level

Control Line Status Interrupt Mask Level Required
for RecognitionIPL2 IPL1 IPL0

0 Negated Negated Negated No Interrupt Requested
1 Negated Negated Asserted 0
2 Negated Asserted Negated 0–1
3 Negated Asserted Asserted 0–2
4 Asserted Negated Negated 0–3
5 Asserted Negated Asserted 0–4
6 Asserted Asserted Negated 0–5
7 Asserted Asserted Asserted 0–7

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-19

8.4 RETURN FROM EXCEPTIONS

Once the processor has completed processing of all exceptions, it must restore the machine
context at the time of the initial exception before returning control to the original process.

Since the MC68060 is a complete restart machine, when the processor executes an RTE
instruction, only three fields are referenced. The stack format is accessed (SP+6) and the
frame type is first verified. If the format indicates an invalid type, a format error exception is
signaled. Otherwise, the processor accesses the SR (SP) and PC (SP+2) fields from the top
of the supervisor stack. If the PC value defines an odd address (least significant address bit
is set), then an address error exception is signaled. Note that for the format error or the
address error, the new stack frame will contain the SR value at the time the RTE’s execution
began, i.e., the SR has not been corrupted by the execution of the RTE. For either fault, the
PC is the logical address of the RTE instruction.

Given a valid stack format and a nonfaulting PC, the SR and PC are loaded with the stack
operands, the SSP adjusted by the appropriate value determined by the format field, and
control passed to the location defined by the new PC.

When the processor writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned SP enhances exception processing perfor-
mance. The processor does not necessarily read or write the stack frame data in sequential
order. The following paragraphs discuss in detail each stack frame format.

Note that unlike any of the previous M68000 processors, the MC68060 RTE instruction
treats the access error frame no differently from other frames.

8.4.1 Four-Word Stack Frame (Format $0)

If a four-word stack frame is on the stack and an RTE instruction is encountered, the pro-
cessor updates the SR and PC with the data read from the stack, increments the stack
pointer by eight, and resumes normal instruction execution

Stack Frames Exception Types Stacked PC Points To

• Interrupt
• Format Error

• TRAP #N
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• Privilege Violation

• Floating-Point Pre-Instruction
• Unimplemented Integer

• Unimplemented Effective Ad-
dress

• Next Instruction
• RTE or FRESTORE Instruc-

tion
• Next Instruction
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• First Word of Instruction

 Causing Privilege Violation
• Floating-Point Instruction

• Unimplemented Integer In-
struction

• Instruction That Used the Un-
implemented Effective Ad-
dress

STATUS REGISTER

PROGRAM COUNTER

0 0 0 0 VECTOR OFFSET

015
SP

+$02

+$06

FOUR-WORD STACK FRAME–FORMAT $0

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-2

M68060 USER’S MANUAL

MOTOROLA

toggling (such as during in-circuit testing) by placing all system signal pins to a high
impedance state.

NOTE

The IEEE standard 1149.1 test logic cannot be considered com-
pletely benign to those planning not to use this capability. Cer-
tain precautions must be observed to ensure that this logic does
not interfere with system operation and allows full use of the
LPSTOP function. Refer to

9.1.5 Disabling the IEEE 1149.1
Standard Operation

9.1.1 Overview

Figure 9-1 illustrates the block diagram of the MC68060 implementation of the 1149.1 stan-
dard.The test logic includes several test data registers, an instruction register, instruction
register control decode, and a 16-state dedicated TAP controller. The sixteen controller
states are defined in detail in the in the IEEE 1149.1 standard, but eight are listed in Table
9-1 and included for illustration purposes:

The TAP consists of five dedicated signal pins which are controlled by a sixth dedicated
compliance enable pin.

1. JTAG—An active low JTAG enable pin that maps the TAP signals to either the 1149.1
logic or the emulation mode logic and meets the requirements set forth for a compli-
ance enable pin. The TAP pins are described in the case of JTAG asserted.

2. TCK—A test clock input that synchronizes test logic operations.

3. TMS—A test mode select input with an internal pullup resistor that is sampled on the
rising edge of TCK to sequence the TAP controller.

4. TDI—A serial test data input with an internal pullup resistor that is sampled on the ris-
ing edge of TCK.

5. TDO—A three-state test data output that is actively driven only in the shift-IR and shift-
DR controller states and only updates on the falling edge of TCK.

6. TRST—An active low asynchronous reset with an internal pullup resistor that forces
the TAP controller into the test-logic-reset state.

Table 9-1. JTAG States

State Name State Summary

Test-Logic-Reset Places test logic in default defined reset state

Run-Test-Idle Allows test control logic to remain idle while test operations
occur

Capture-IR Loads default IDCODE instruction into the instruction register

Shift-IR Allows serial data to move from TDI to TDO through the instruc-
tion register

Update-IR Applies and activates instruction contained in the instruction
shift register

Capture-DR Loads parallel sampled data into the selected test data register

Shift-DR Allows serial data to move from TDI to TDO through the selected
test data register

Update-DR Applies test data contained in the selected test data register

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-3

9.1.2 JTAG Instruction Shift Register

The MC68060 IEEE 1149.1 implementation uses a 4-bit instruction shift register without par-
ity. The shift register transfers its value to a parallel hold register and applies one of sixteen
possible instructions, seven of which are defined as public customer-usable instructions, on
the falling edge of TCK when the TAP state machine is in the update-IR state (the other nine
instructions are private instructions to support manufacturing test and can cause destructive
behavior if used without proper understanding). The instructions may be loaded into the shift
portion of the register by placing the serial data on the TDI signal prior to each rising edge
of TCK. The most significant bit of the instruction shift register is the bit closest to the TDI
signal and the least significant bit is the bit closest to the TDO pin.

The public customer-usable instructions that are supported are listed with their encodings in
Table 9-2.

Figure 9-1. JTAG Test Logic Block Diagram

213 0

214-BIT BOUNDARY SCAN REGISTER

1-BIT BYPASS

0

32-BIT IDCODE REGISTER

31 0

4-BIT INSTRUCTION SHIFT REGISTER

INSTRUCTION APPLY & DECODE REGISTER

03

TDI

M

U

X

TDO

TAP CONTROLLER

TRST

TCK

TMS

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-27

9.2.2 Debug Pipe Control Mode Commands
The following capabilities are provided by the debug pipe control mode:

• Halt and restart processor execution

• Forcing the processor into an emulator mode

• From a halted processor state, the following additional capabilities are provided:
—Setting and resetting a non-pipelined execution mode in the processor
—Override disable processor configuration features (instruction cache, data cache,

address translation caches (ATCs), write buffer, branch cache, floating-point unit
(FPU), superscalar dispatch)

—Forcing insertion of cache and ATC control operations into the processor pipeline for
execution (CINV all for instruction cache and data cache, CPUSH all for instruction
cache and data cache, and PFLUSH all for ATCs)

—Forcing all processor outputs into and out of a high-impedance state and disable all
inputs

—Setting and resetting modes that convert trace exceptions and breakpoint instruc-
tions into emulator mode entry

Table 9-5 provides a brief summary of the command functions that are made available
through the debug pipe control mode. Most of the commands can only be issued only when
the processor is halted.

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-21

10.11 BRANCH INSTRUCTION EXECUTION TIMES
Table 10-17, Table 10-18, and Table 10-19 indicate the number of clock cycles required for
execution of the branch, jump, and return instructions. The number of operand read and
write cycles is shown in parentheses (r/w). Where indicated, the number of clock cycles and
r/w cycles must be added to those required for effective address calculation.

1 Add the effective address calculation time for each entry.

Table 10-17. Branch Execution Times

Instruction

Not
Predicted,
Forward,

Taken

Not
Predicted,
Forward,

Not Taken

Not
Predicted,
Backward,

Taken

Not
Predicted,
Backward,
Not Taken

Predicted
Correctly as

Taken

Predicted
Correctly as
Not Taken

Predicted
Incorrectly

Bcc 7(0/0) 1(0/0) 3(0/0) 7(0/0) 0(0/0) 1(0/0) 7(0/0)
BRA 3(0/0) — 3(0/0) — 0(0/0) — —
BSR 3(0/1) — 3(0/1) — 1(0/1) — —
DBcc 3(0/0) 8(0/0) 3(0/0) 8(0/0) 2(0/0) 2(0/0) 8(0/0)
DBRA 3(0/0) 7(0/0) 3(0/0) 7(0/0) 1(0/0) 1(0/0) 7(0/0)
FBcc 8(0/0) 2(0/0) 8(0/0) 2(0/0) 2(0/0) 2(0/0) 8(0/0)

Table 10-18. JMP, JSR Execution Times1

Instruction

Not
Predicted,
Forward,

Taken

Not
Predicted,
Forward,

Not Taken

Not
Predicted,
Backward,

Taken

Not
Predicted,
Backward,
Not Taken

Predicted
Correctly as

Taken

Predicted
Correctly as
Not Taken

Predicted
Incorrectly

JMP (d16,PC) 3(0/0) — 3(0/0) —— 0(0/0) — —
JMP xxx.WL 3(0/0) — 3(0/0) — 0(0/0) — —

Remaining JMP 5(0/0) — 5(0/0) — 5(0/0) — —
JSR (d16,PC) 3(0/1) — 3(0/1) — 1(0/1) — —
JSR xxx.WL 3(0/1) — 3(0/1) — 1(0/1) — —

Remaining JSR 5(0/1) — 5(0/1) — 5(0/1) — —

Table 10-19. Return Instruction Execution Times
Instruction Execution Time

RTD 7(1/0)
RTE 17(3/0)
RTR 8(2/0)
RTS 7(1/0)

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-11

divide and the source operand is a zero, then the library routine (as it is last instruction) exe-
cutes an implemented divide using a zero source operand so that an integer divide-by-zero
exception will be taken. Although the exception stack frame will not point to the correct
instruction, the user can at least be able to record that such an event occurred.

C.3 FLOATING-POINT EMULATION PACKAGE (MC68060FPSP)

The MC68060 does not implement some floating-point instructions, addressing modes, and
data types on-chip in order to streamline internal operations. This results in an overall sys-
tem performance improvement at the expense of software emulation of these unimple-
mented instructions, addressing modes, and data types. The M68060SP provides three
separate modules that are related to floating-point operations. The first floating-point module
is the full floating-point kernel module. This module is used for applications that require emu-
lation of the full MC68881 floating-point instruction set, data-types, and IEEE-754 exception
handling. The second floating-point module is the floating-point library. This library is pro-
vided as a separate module for applications that need to avoid the latency incurred by the
F-line exception processing for unimplemented floating-point instructions. However, this
method requires recompiling of existing software to implement subroutine calls. The third
floating-point module, the partial floating-point kernel module, is optional and is used prima-
rily in systems that also integrate the floating-point library. The partial floating-point kernel
module is similar in function to the full floating-point kernel except that it does not contain
the unimplemented floating-point instruction exception handler. This module is provided for
the purpose of saving memory space. Otherwise, the full floating-point kernel module must
be used instead.

* mulu.l <ea>,Dh:Dl
* mulu.l _multiplier,d1:d0

subq.l #$8,sp ; make room for result on stack
pea (sp) ; pass: result addr on stack
move.l d0,-(sp) ; pass: multiplicand on stack
move.l _multiplier,-(sp) ; pass: multiplier on stack
bsr.l _060LISP_TOP+$18 ; branch to multiply routine
add.l #$c,sp ; clear arguments from stack
move.l (sp)+,d1 ; load result[63:32]
move.l (sp)+,d0 ; load result[31:0]

Figure C-6. MUL Instruction Call Example

* cmp2.l <ea>,Rn
* cmp2.l _bounds,d0

pea _bounds ; pass ptr to bounds
move.l d0,-(sp) ; pass Rn
bsr.l _060LSP_TOP_+$48 ; branch to “cmp2” routine
add.l #$8,sp ; clear arguments from stack

Figure C-7. CMP2 Instruction Call Example

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-21

MOVEC Move Control Register MOVEC
(MC68060, MC68LC060 and MC68EC060)

Operation: If Supervisor State
Then Rc ➧ Rn or Rn ➧ Rc

Else TRAP

Assembler MOVEC Rc,Rn
Syntax: MOVEC Rn,Rc

Attributes: Size = (Long)

Description: Moves the contents of the specified control register (Rc) to the specified
general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer, even though the control reg-
ister may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:

dr field—Specifies the direction of the transfer.
0—Control register to general register.
1—General register to control register.

A/D field—Specifies the type of general register.
0—Data Register
1—Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-23

PLPA Load Physical Address PLPA
(MC68060, MC68LC060)

Operation: If Supervisor State
Then Logical Address {DFC,An} translated to Physical
Address ➧ An

Else TRAP

Assembler
Syntax: PLPAR (An)

PLPAW (An)

Attributes: Unsized

Description: Translates the logical address defined by the contents of the destination
function code register (DFC2–DFC0) and the address register (An31–An0), using full
paged MMU functionality including TTRs, and generates a 32-bit physical address,
which is loaded into An. All access error checks are performed during the translation,
including in the checks the read/write instruction type, and an access error exception
will be taken for faulting conditions.

PLPA is a privileged instruction; attempted execution in user mode will result in a priv-
ilege violation exception.

As with normal address translation activity:

If Data TTR hit

Then Use TTR translation and An stays the same

Else if E bit of TC Register = 0 or MDIS pin asserted

Then Use Default TTR translation and An stays the same

Else if E bit of TC Register =1 and MDIS pin negated and Data ATC hit

Then use ATC translation and An = Physical Address

Else if E bit of TC Register =1 and MDIS pin negated and Data ATC miss

Then Tablewalk

If Valid Page Descriptor Encountered

Then update Data ATC and An = Physical Address

Else Take Access Error Exception

EndIF

Condition Codes:
Not affected.

