
Motorola - MC68EC060ZU66 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 66MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 304-LBGA Exposed Pad

Supplier Device Package 304-TBGA (31x31)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68ec060zu66

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec060zu66-4468445
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Table of Contents

xviii

M68060 USER’S MANUAL

MOTOROLA

Appendix C
MC68060 Software Package

C.1 Module Format..C-2
C.2 Unimplemented Integer Instructions ...C-4
C.2.1 Integer Emulation Results ..C-5
C.2.2 Module 1: Unimplemented Integer Instruction Exception

(MC68060ISP)..C-5
C.2.2.1 Unimplemented Integer Instruction Exception Module Entry PointsC-6
C.2.2.2 Unimplemented Integer Instruction Exception Module Call-Outs.............C-6
C.2.2.3 CAS Misaligned Address and CAS2

Emulation-Related Call-Outs and Entry Points ..C-6
C.2.3 Module 2: Unimplemented Integer Instruction Library (MC68060ILSP)C-9
C.3 Floating-Point Emulation Package (MC68060FPSP)C-11
C.3.1 Floating-Point Emulation Results ...C-13
C.3.2 Module 3: Full Floating-Point Kernel ..C-14
C.3.2.1 Full Floating-Point Kernel Module Entry PointsC-14
C.3.2.2 Full Floating-Point Kernel Module Call-Outs ..C-14
C.3.2.2.1 The F-Line Exception Call-Outs ...C-14
C.3.2.2.2 System-Supplied Floating-Point Arithmetic

Exception Handler Call-Outs ..C-15
C.3.2.2.3 Exception-Related Call-Outs ...C-15
C.3.2.2.4 Exit Point Call-Outs ..C-15
C.3.2.3 Bypassing Module-Supplied Floating-Point Arithmetic HandlersC-15
C.3.2.3.1 Overflow/Underflow..C-16
C.3.2.3.2 Signalling Not-A-Number, Operand Error...C-17
C.3.2.3.3 Inexact Exception ...C-18
C.3.2.3.4 Divide-by-Zero Exception ...C-19
C.3.2.3.5 Branch/Set on Unordered Exception..C-19
C.3.2.4 Exceptions During Emulation ...C-20
C.3.2.4.1 Trap-Disabled Operation ..C-20
C.3.2.4.2 Trap-Enabled Operation...C-21
C.3.3 Module 4: Partial Floating-Point Kernel ..C-21
C.3.4 Module 5: Floating-Point Library (M68060FPLSP)...................................C-22
C.4 Operating System Dependencies ...C-23
C.4.1 Instruction and Data Fetches..C-23
C.4.2 Instructions Not Recommended ...C-26
C.5 Installation Notes ..C-27
C.5.1 Installing the Library Modules...C-27
C.5.2 Installing the Kernel Modules ...C-27
C.5.3 Release Notes and Module Offset AssignmentsC-28
C.5.4 AESOP Electronic Bulletin Board ...C-29

Appendix D
MC68060 Instructions

Signal Description

2-8

M68060 USER’S MANUAL

MOTOROLA

for one full BCLK cycle and then three-stated one BCLK cycle after the address bus is idled.
If LOCKE was already negated in the BCLK cycle in which the MC68060 relinquishes the
bus, it will be three-stated in the same BCLK cycle the address bus is idled.

LOCKE is provided to help make the MC68060 bus compatible with the MC68040-style bus
protocol; however, for new designs, external bus arbitration logic can be simplified with the
use of BGR instead of LOCKE.

Do not use LOCKE. The LOCKE protocol breaks the integrity of the locked read-modify-
write sequence if it is possible to retry the last write of a read-modify-write operation. The
reason is that when LOCKE is asserted, a bus arbiter can grant the bus to an alternate mas-
ter when the current bus cycle is finished (before the retry is attempted). The bus is arbi-
trated away, the last write’s retry is deferred until the bus is returned to the processor. In the
meantime, the alternate master can access the same location where the write should have
taken place. Hence, the integrity of the locked read-modify-write sequence is compromised
in this situation.

2.3.9 Cache Inhibit Out (CIOUT)

When asserted, this three-state output indicates that the MC68060 will not cache the current
bus information in its internal caches. Refer to

Section 4 Memory Management Unit

for
more information on CIOUT function. When the MC68060 is not the bus master, the CIOUT
signal is placed in a high-impedance state.

2.3.10 Byte Select Lines (BS3–BS0)

These three-state outputs indicate which bytes within a long-word transfer are being
selected and which bytes of the data bus will be used for the transfer. BS0 refers to D31–
D24, BS1 refers to D23–D16, BS2 refers to D15–D8, and BS3 refers to D7–D0. These sig-
nals are generated to provide byte data select signals which are decoded from the SIZx, A1,
and A0 signals as shown in Table 2-6. These signals are placed in a high-impedance state
when the MC68060 is not the bus master.

2.4 MASTER TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus cycles when the MC68060 is the bus
master. Refer to

Section 7 Bus Operation

 for detailed information about the relationship
of the bus cycle control signals to bus operation.

Table 2-6. Data Bus Byte Select Signals

Transfer Size SIZ1 SIZ0 A1 A0
BS0 BS1 BS2 BS3

D31–D24 D23–D16 D15–D8 D7–D0

Byte 0 1 0 0 0 1 1 1
Byte 0 1 0 1 1 0 1 1
Byte 0 1 1 0 1 1 0 1
Byte 0 1 1 1 1 1 1 0
Word 1 0 0 0 0 0 1 1
Word 1 0 1 0 1 1 0 0

Long Word 0 0 x x 0 0 0 0
Line 1 1 x x 0 0 0 0

Memory Management Unit

4-28 M68060 USER’S MANUAL MOTOROLA

If the paged MMU is disabled (the E-bit in the TCR register is clear) and the TTRs are dis-
abled or do not match, then the status and protection attributes are defined by the default
translation bits (DCO, DUO, DWO, DCI, and DUI) in the TCR.

4.5 ADDRESS TRANSLATION SUMMARY
If the paged MMU is enabled (the E-bit in the TCR is set), the instruction and data MMUs
process translations by first comparing the logical address and privilege mode with the
parameters of the TTRs if they are enabled. If there is a match, the MMU uses the logical
address as a physical address for the access. If there is no match, the MMU compares the
logical address and privilege mode with the tag portions of the entries in the ATC and uses
the corresponding physical address for the access when a match occurs. When neither a
TTR nor a valid ATC entry matches, the MMU initiates a table search operation to obtain the
corresponding physical address from the translation table. When a table search is required,
the processor suspends instruction execution activity and, at the end of a successful table
search, stores the address mapping in the appropriate ATC and retries the access. The
MMU creates a valid ATC entry for the logical address. If the table search encounters an
invalid descriptor, or a write-protect for a write, or is a user access and encounters a super-
visor-only flag, then the access error exception is taken whenever the access is needed
(immediately for operands and deferred for instruction fetches).

If a write or locked read-modify-write access results in an ATC hit but the page is write pro-
tected, the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in memory and in the ATC; the access is retried. The
ATC provides the address translation for the access if the modified bit of the ATC entry is
set for a write or locked read-modify-write access to an unprotected page and if none of the
TTRs (instruction or data, as appropriate) match.

Figure 4-21 illustrates a general flowchart for address translation. The top branch of the flow-
chart applies to transparent translation. The bottom three branches apply to ATC translation.

4.6 RSTI AND MDIS EFFECT ON THE MMU
The following paragraph describes how the MMU is affected by the RSTI and MDIS pins.

4.6.1 Effect of RSTI on the MMUs
When the MC68060 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses to
be passed through as physical addresses, allowing an operating system to set up the trans-
lation tables and MMU registers as required. After the translation tables and registers are
initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the default TTR is used. The default TTR attribute bits are
cleared upon reset, so that immediately after assertion of RSTI the attributes will specify
write-through cachable mode, no write protection, user page attribute bits cleared, and 1/2-
cache mode disabled.

A reset of the processor does not invalidate any entries in the ATCs page size. A PFLUSH
instruction must be executed to flush all existing valid entries from the ATCs after a reset

Caches

MOTOROLA

M68060 USER’S MANUAL

5-7

data cache is disabled for the second half of the operand. Internal accesses always bypass
the instruction and data caches while CDIS is recognized, and the contents of the caches
are unchanged. Disabling the caches with CDIS does not affect snoop operations. CDIS is
intended primarily for use by in-circuit emulators to allow swapping between the tags and
emulator memories.

The privileged CINV and CPUSH instructions support cache management, by selectively
pushing and/or invalidating an individual cache line, a full page, or an entire cache, for either
or both instruction and data caches. CINV allows selective invalidation of cache entries. The
CPUSH instruction will either push and invalidate all matching lines, or push and leave the
line valid, depending on the state of the DPI bit of the CACR register. (Note that only CPUSH
instructions which specify the data cache are affected by the DPI bit. Since the instruction
cache cannot have dirty data, a CPUSH specifying the instruction cache is interpreted as a
CINV instruction.) Because of the size of the caches, pushing pages or an entire cache may
incur a significant time penalty. Therefore, the CPUSH instruction may be interrupted to
avoid large interrupt latencies. The state of the CDIS signal or the cache enable or no-allo-
cate bits in the CACR does not affect the operation of CINV and CPUSH.

5.4 CACHING MODES

Every cache access has an associated caching mode from the MMU that determines how
the cache handles the access. An access can be cachable in either the writethrough or
copyback modes, or it can be cache inhibited in precise or imprecise modes. The CM field
(from the transparent translation register (TTR) or MMU translation table page descriptor)
corresponding to the logical address of the access normally specifies, on a page-by-page
basis, one of these caching modes. When the cache is enabled and memory management
is disabled, the default caching mode is writethrough.

The MMU provides the cache mode user page attributes (UPAx) and write protection for
each access. This information may come from a TTR which matches or from the MMU trans-
lation tables via the ATC. If both the TTR and the ATC match the access, the TTR provides
the information. If the paging MMU is disabled (TCR bit clear) and neither TTR matches,
then the cache mode, UPAx, and write protection will be that which is specified in the default
bits of the TCR. After reset, the defaults are writethrough cache mode, UPAx bits are zero,
and all addresses may be written.

The TTRs and MMUs allow the defaults to be overridden. In addition, some instructions and
integer unit operations perform data accesses that have an implicit caching mode associ-
ated with them. The following paragraphs discuss the different caching accesses and their
related cache modes.

5.4.1 Cachable Accesses

If the CM field of a page descriptor, TTR, or default field of the TCR indicates writethrough
or copyback, then the access is cachable. A read access to a writethrough or copyback page
is read from the cache if matching data is found. Otherwise, the data is read from memory
and used to update the cache. Since instruction cache accesses are always reads, the
selection of writethrough or copyback modes do not affect them. The following paragraphs
describe the writethrough and copyback modes in detail.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-25

The user BSUN exception handler must execute an FSAVE as its first floating-point instruc-
tion. FSAVE allows other floating-point instructions to execute without reporting the BSUN
exception again, although none of the state frame values are useful in the execution of the
user BSUN exception handler. The BSUN exception is unique in that the exception is taken
before the conditional predicate is evaluated. If the user BSUN exception handler does not
set the PC to the instruction following the one that caused BSUN exception when returning,
the exception is executed again. Therefore, it is the responsibility of the user BSUN excep-
tion handler to prevent the conditional instruction from taking the BSUN exception again.
There are four ways to prevent taking the exception again:

1. Incrementing the stored PC in the stack bypasses the conditional instruction. This
technique applies to situations where a fall-through is desired. Note that accurate cal-
culation of the PC increment requires detailed knowledge of the size of the conditional
instruction being bypassed.

2. Clearing the NAN bit prevents the exception from being taken again. However, this
alone cannot deterministically control the result’s indication (true or false) that would
be returned when the conditional instruction re-executes.

3. Disabling the BSUN bit also prevents the exception from being taken again. Like the
second method, this method cannot control the result indication (true or false) that
would be returned when the conditional instruction re-executes.

4. Examining the conditional predicate and setting the FPCC NAN bit accordingly pre-
vents the exception from being taken again. This technique gives the most control
since it is possible to predetermine the direction of program flow. Bit 7 of the F-line op-
eration word indicates where the conditional predicate is located. If bit 7 is set, the con-
ditional predicate is the lower six bits of the F-line operation word. Otherwise, the
conditional predicate is the lower six bits of the instruction word, which immediately fol-
lows the F-line operation word. Using the conditional predicate and the table for IEEE
nonaware test in 6.4.2 Conditional Testing, the condition codes can be set to return
a known result indication when the conditional instruction is re-executed.

Prior to exiting the user BSUN exception handler, the user exception handler discards the
floating-point state frame before executing the RTE to return to normal program flow.

6.6.2 Signaling Not-a-Number (SNAN)
An SNAN is used as an escape mechanism for a user-defined, non-IEEE data type. The pro-
cessor never creates an SNAN as a result of an operation; a NAN created by an operand
error exception is always a nonsignaling NAN. When an operand is an SNAN involved in an
arithmetic instruction, the SNAN bit is set in the FPSR EXC byte. Since the FMOVEM,
FMOVE FPCR, and FSAVE instructions do not modify the status bits, they cannot generate
exceptions. Therefore, these instructions are useful for manipulating SNANs.

6.6.2.1 TRAP DISABLED RESULTS (FPCR SNAN BIT CLEARED). If the destination
data format is S, D, X, or P, then the most significant bit of the fraction is set to one and the
resulting nonsignaling NAN is transferred to the destination. No bits other than the SNAN bit
of the NAN are modified, although the input NAN is truncated if necessary. If the destination
data format is B, W, or L, then the 8, 16, or 32 most significant bits of the SNAN significand,
with the SNAN bit set, are written to the destination.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-29

FPCR exception enable byte is set and the corresponding INEX bit in the FPSR EXC byte
is also set).

6.6.4.1 TRAP DISABLED RESULTS (FPCR OVFL BIT CLEARED). The values defined
in Table 6-13 are stored in the destination based on the rounding mode defined in the FPCR
MODE byte. The result is rounded according to the rounding precision defined in the FPCR
MODE byte if the destination is a floating-point data register. If the destination is in memory
or an integer data register, then the rounding precision in the FPCR MODE byte is ignored,
and the given destination format defines the rounding precision. If the instruction has a
forced rounding precision (e.g., FSADD, FDMUL), the instruction defines the rounding pre-
cision.

6.6.4.2 TRAP ENABLED RESULTS (FPCR OVFL BIT SET). The result stored in the des-
tination is the same as the result stored when the trap is disabled before control is passed
to the user OVFL handler. For an FMOVE OUT instruction, the operand is stored in memory
or integer data register, and then control is passed to the user OVFL handler as a post-
instruction exception. If the destination is a floating-point data register, control is passed to
the user OVFL handler as a pre-instruction exception when the next floating-point operation
is encountered.

The user OVFL handler must execute an FSAVE instruction as the first floating-point instruc-
tion to prevent further exceptions from being taken. The address of the instruction that
causes the overflow is available to the user OVFL handler in the FPIAR. By examining the
instruction, the user OVFL handler can determine the arithmetic operation type and destina-
tion location. The exception operand is stored in the floating-point state frame (generated by
the FSAVE). When an overflow occurs, the exception operand is defined differently for var-
ious destination types:

1. FMOVE OUT instruction (memory or integer data register destination)—the value in
the exception operand is the intermediate result mantissa rounded to the destination
precision, with a 15-bit exponent biased as a normal extended-precision number. In
the case of a memory destination, the evaluated effective address of the operand is
available in the integer stack frame format $3. This allows the user OVFL handler to
overwrite the default result, if necessary, without recalculating the effective address.

2. Floating-point data register destination—the value in the exception operand is the in-
termediate result rounded to extended precision, with an exponent bias of $3FFF–
$6000 rather than $3FFF. The additional bias of –$6000 is used so that it is possible
to represent the larger exponent in a 15-bit format.

In addition to normal overflow, the exponential instructions (ex, 10x, 2x, SINH, COSH, and
FSCALE) may generate results that grossly overflow the 16-bit exponent of the internal

Table 6-13. Overflow Rounding Mode Values
Rounding Mode Result

RN Infinity, with the sign of the intermediate result.
RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive number; for negative overflow, – infinity.
RP For positive overflow, + infinity; for negative overflow, largest negative number.

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-3

7.2 FULL-, HALF-, AND QUARTER-SPEED BUS OPERATION AND BCLK

To simplify the description of full-, half-, and quarter-speed bus operation, the term “bus
clock” or “BCLK” is introduced to describe the effective frequency of bus operation. The bus
clock is analogous to the MC68040 clock input called BCLK. The MC68040 BCLK defines
when input signals are sampled and when output signals begin to transition. Once the rela-
tionship of CLK, CLKEN, and the virtual BCLK is established, it is possible to describe the
MC68060 bus more easily, relative to BCLK.

CLKEN allows the bus to synchronize to BCLK which is running at half or quarter speed of
the processor clock (CLK). On rising CLK edges in which CLKEN is asserted, inputs to the
processor are recognized and outputs of the processor may begin to assert, negate, or
three-state. On rising CLK edges in which CLKEN is negated, no inputs are recognized and
no outputs begin to change (except BB and TIP). Figure 7-1 illustrates the general relation-
ship between CLK, CLKEN, and most input and output signals.

For brevity, the term “full-speed bus” is introduced to refer to systems in which BCLK is run-
ning at the same frequency as CLK. The term “half-speed bus” refers to systems in which
BCLK is running at half the frequency of CLK. For those familiar with the MC68040, the half-
speed bus is analogous to the MC68040 implementation. The term “quarter-speed bus”
refers to systems in which BCLK is running at one quarter the frequency of CLK. The
MC68060 clocking mechanism is designed so that systems designed today can be
upgraded with higher-frequency MC68060s, without forcing the rest of the system to operate
at the same higher processor frequency. This flexibility also allows the MC68060 to be used
in existing MC68040 system designs.

A full-speed bus design is achieved by continuously asserting CLKEN as shown in Figure
7-2. A half speed bus is achieved by asserting CLKEN about every other rising edge of CLK.
Figure 7-3 shows a timing diagram of the relationship between CLK, CLKEN, and BCLK for
half-speed bus operation. A quarter-speed bus is achieved by asserting CLKEN once about
every four rising edges of CLK. Figure 7-4 shows a timing diagram of the relationship
between CLK, CLKEN, and BCLK for quarter-speed bus operation.

Note that once BCLK has been established, inputs and outputs appear to be synchronized
to this virtual BCLK. To simplify the description of MC68060 bus operation, the rising edges

Figure 7-4. Quarter-Speed Clock

CLKEN

CLK

BCLK

BB or TIP
THREE-STATING FROM

ASSERTED STATE

Bus Operation

7-4

M68060 USER’S MANUAL

MOTOROLA

of BCLK represent the rising edges of CLK in which CLKEN is asserted. However, there are
cases in which the BCLK concept does not apply.

The BCLK concept does not apply to the IPLx and RSTI input signals. These inputs are sam-
pled every CLK edge. The processor status (PSTx), RSTO, and IPEND outputs do not follow
the BCLK concept, either, since these outputs can change on any CLK rising edge, regard-
less of CLKEN. The BB and TIP signals generally follow the BCLK concept except when
these signals are already driven asserted by the processor and then three-stated. This
occurs when the bus is arbitrated away from the processor immediately after an active bus
cycle. These outputs are actively negated for one CLK period before three-stating. Figure 7-
2, Figure 7-3, and Figure 7-4 illustrate the behavior of BB and TIP in the case mentioned.
The BB signal is not recommended for use in full-speed bus designs since bus contention
is possible when tied to alternate masters’ BB pins.

Other implementations of CLKEN are not supported.

7.3 ACKNOWLEDGE TERMINATION IGNORE STATE CAPABILITY

The MC68060 provides the capability to ignore termination acknowledgments to assist in
system designs. Independent ignore state counters for read and write, primary (initial) trans-
fer, and secondary (burst) transfer are used during bus cycles to determine which BCLK ris-
ing edges transfer acknowledge termination signals should be ignored or sampled.

This special mode is selected during a reset operation. Please refer to

7.14 Special Modes
of Operation

 for details on how to enable this mode.

7.4 BUS CONTROL REGISTER

The bus control register (BUSCR) is accessed via the MOVEC instruction. Its main purpose
is to provide a way to control the external LOCK and LOCKE signals in software. This fea-
ture is essential in emulating the CAS2 instruction and in providing a means to control bus
arbitration activity during critical code segments. Figure 7-5 shows the BUSCR format.

L—Lock Bit
0 = Negate external LOCK signal.
1 = Assert external LOCK signal.

SL—Shadow Copy, Lock Bit
 0 = LOCK negated sequence at time of exception.
 1 = LOCK asserted at time of exception.

Figure 7-5. Bus Control Register Format

31 30 0

L Reserved for Future UseSL

29 28

LE SLE

27

Bus Operation

7-8

M68060 USER’S MANUAL

MOTOROLA

Figure 7-8. Byte Select Signal Generation and PAL Equation

A0
A1

SIZ0
SIZ1

UPPER UPPER DATA SELECT
D31–D24
BS0

UPPER MIDDLE DATA SELECT
D23–D16
BS1

LOWER MIDDLE DATA SELECT
D15–D8
BS2

LOWER LOWER DATA SELECT
D7–D0
BS3

PAL16L8
U1
MC68060 Byte Data Select Generation.
A0 A1 SIZ0 SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD
NC NC NC NC VCC

/UUD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0

; directly addressed, any size
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; word aligned, size is word or line
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; word aligned, word or line size
; enable every byte for long-word size
; enable every byte for line size

/UMD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0
/LMD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0
/LLD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-19

asserted. The registered data and the value of TCI are then passed to the appropriate
memory unit.
If TBI was negated with the assertion of TA, the processor continues the cycle with C3.
Otherwise, if TBI was asserted, the line transfer is burst inhibited, and the processor reads
the remaining three long words using long-word read bus cycles. The processor incre-
ments A3 and A2 for each read, and the new address is placed on the address bus for
each bus cycle. Refer to 7.7.1 Byte, Word, and Long-Word Read Transfer Cycles for
information on long-word reads. If no wait states are generated, a burst-inhibited line read
completes in eight clocks instead of the five required for a burst read.

Clock 3 (C3)
The processor holds the address and transfer attribute signals constant during C3 if CLA
is negated. The selected device must either increment A3 and A2 to reference the next
long word to transfer, place the data on the data bus, and assert TA, or alteratively assert
the CLA input to request the processor to increment A3 and A2. Refer to 7.7.7 Using CLA
to Increment A3 and A2 for details on CLA operation.
As in the description of C2, using acknowledge termination ignore state capability, the pro-
cessor ignores any termination signal, such as TA, until a user-programmable number of
BCLK edges has expired. And, as in the description in C2, SAS indicates the first BCLK
rising edge in which acknowledge termination signals become significant. If this mode is
disabled, SAS stays asserted in C3 to indicate that the processor will sample TA immedi-
ately. Refer to 7.14.1 Acknowledge Termination Ignore State Capability for details on
this mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA and registers the current value on the data bus at the end
of C3. If TA is asserted, the transfer terminates and the second long word of data is
passed to the appropriate memory unit. If TA is not recognized asserted at the end of C3,
the processor ignores the latched data and inserts wait states instead of terminating the
transfer. The processor continues to sample TA on successive rising edges of BCLK until
it is recognized asserted. The registered data is then passed to the appropriate memory
unit.

Clock 4 (C4)
This clock is identical to C3 except that once TA is recognized asserted, the registered
value corresponds to the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once TA is recognized, the registered value cor-
responds to the fourth long word of data for the burst. After the processor recognizes the
last TA assertion and terminates the line read bus cycle, TIP remains asserted if the pro-
cessor is ready to begin another bus cycle. Otherwise, the processor negates TIP during
the next clock.
Figure 7-16 and Figure 7-17 illustrate a flowchart and functional timing diagram for a
burst-inhibited line read bus cycle.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-23

Figure 7-19. Long-Word Write Bus Cycle Timing

C1 C2

BCLK

BYTESIZ1–SIZ0

TS

TIP

TA

R/W

1 2 0

LONG

BYTE WRITE WORD WRITE
WITH WAIT

LONG-WORD
WRITE

C1 CW C1 C2C2

WORD

BS0

BS1

BS2

BS3

MISCELLANEOUS
 ATTRIBUTES

D31–D0

SAS

PRE
DRIVE

PRE
DRIVE

PRE
DRIVE

A1–A0

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

Bus Operation

7-32 M68060 USER’S MANUAL MOTOROLA

BUSCR is used to control the LOCK and LOCKE outputs. Refer to 7.4 Bus Control Regis-
ter for the format of the BUSCR. Emulation of these instructions is done as part of the
MC68060 software package (M68060SP). Refer to Appendix C MC68060 Software Pack-
age for more information.

7.7.7 Using CLA to Increment A3 and A2
The MC68060 provides the capability to cycle long-word address bits A3, A2 based on the
CLA signal, which should assist in supporting high-speed DRAM systems. CLA may also be
used to support bursting for slaves which do not burst.

The processor begins sampling CLA immediately following the BCLK rising edge that
causes TS to assert. The initial address of the line transfer is that of the first requested or
needed long word and the attributes are those of the line transfer. After each BCLK rising
edge when CLA is asserted, the long-word address (A3, A2) increments in circular wrap-
around fashion. If CLA is negated, A3, A2 does not change, but remains fixed, as on the
MC68040 processor. Since CLA is not an acknowledge termination signal, it is not affected
by the acknowledge termination ignore state capability, if that mode is enabled. Also note
that the A3, A2 increments in a circular wrap around fashion for as many times as CLA is
asserted about a rising BCLK edge.

Figure 7-24 shows how CLA may be used for a high-speed DRAM design. In this figure, the
DRAM design requires a means of cycling A3, A2 before TA is asserted to the processor.
CLA provides a method of avoiding a delay which would otherwise be incurred with the use
of an external medium-scale integration (MSI) counter. W0 to W3 represent A3, A2 incre-
menting. C0 to C3 represent the column address sequencing caused by the change of A3,
A2. The timing diagram represents a 5:3:3:3 design, which is feasible with a full-speed 50-
MHz clock and 65-ns page-mode DRAMs.

7.8 ACKNOWLEDGE CYCLES
Bus transfers with transfer type signals TT1 and TT0 = $3 are classified as acknowledge bus
cycles. The following paragraphs describe interrupt acknowledge, breakpoint acknowledge,
and LPSTOP broadcast bus cycles that use this encoding.

7.8.1 Interrupt Acknowledge Cycles
When a peripheral device requires the services of the MC68060 or is ready to send informa-
tion that the processor requires, it can signal the processor to take an interrupt exception.
The interrupt exception transfers control to a routine that responds appropriately. The
peripheral device uses the interrupt priority level signals (IPLx) to signal an interrupt condi-
tion to the processor and to specify the priority level for the condition. Refer to Section 8
Exception Processing for a discussion on the IPLx levels and IPEND.

The status register (SR) of the MC68060 contains an interrupt priority mask (I2–I0 bits). The
value in the interrupt mask is the highest priority level that the processor ignores. When an
interrupt request has a priority higher than the value in the mask, the processor makes the
request a pending interrupt. IPLx must maintain the interrupt request level until the
MC68060 acknowledges the interrupt to guarantee that the interrupt is recognized. The
MC68060 continuously samples IPLx on consecutive rising edges of CLK to synchronize

Bus Operation

7-64 M68060 USER’S MANUAL MOTOROLA

Figure 7-42. MC68060-Arbitration Protocol State Diagram

AM
IMPLICIT

AM
EXPLICIT

SNOOP

IMPLICIT
OWN

F3

E4

E5

E6

F2

F1

E3

E2

E1

D5

D4

EXPLICIT
OWN

END
TENURE

RESET

A1

B1

B2

B3

B4

A3

A2

D3
D1

C1

C3

C2

D2G1

D

BTTBTTI

Q
BR

BTTO

BTTO THREE-STATE

IBR

BCLK

IBR
BR

BTTI
BTTO

BTT
BCLK

= INTERNAL BUS REQUEST SIGNAL
= EXTERNAL BUS REQUEST PIN
= INTERNAL BTT SAMPLED AS INPUT
= BTT DRIVEN INTERNALLY BY MC68060
= EXTERNAL BTT PIN
= VIRTUAL BUS CLOCK DERIVED FROM CLK AND CLKEN

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-73

For processor resets after the initial power-on reset, RSTI should be asserted for at least ten
BCLK periods. Figure 7-49 illustrates timings associated with a reset when the processor is
executing bus cycles. BB and TIP are negated before transitioning to a three-state level.

Resetting the processor causes any bus cycle in progress to terminate as if TEA had been
asserted. In addition, the processor initializes registers appropriately for a reset exception.
Section 8 Exception Processing describes reset exception processing. When a RESET
bus operation instruction is executed, the processor drives the reset out (RSTO) signal for
512 CLK cycles. In this case, the processor can be used to reset external devices in a sys-
tem, and the internal registers of the processor are unaffected. The external devices con-
nected to the RSTO signal are reset at the completion of the RESET instruction. An RSTI
signal that is asserted to the processor during execution of a RESET instruction immediately
resets the processor and causes the RSTO signal to negate. RSTO can be logically ANDed
with the external signal driving RSTI to derive a system reset signal that is asserted for both
an external processor reset and execution of a RESET instruction.

Figure 7-49. Normal Reset Timing

BCLK

BUS
SIGNALS

RSTI

TS

BR

D15-D0,
IPL2–IPL0

BG

BB

TIP

t 10
BCLK CYCLES

27
CLK CYCLES

>

BTT

NOTE: For the processor to reset begin bus cycles after reset, BG must be asserted, TS must be negated or pulled up. BTT must be asserted (or BTT transition
from asserted to negated) eventually to indicate an end to the alternate master's tenure.

Bus Operation

7-74 M68060 USER’S MANUAL MOTOROLA

7.14 SPECIAL MODES OF OPERATION
The MC68060 supports the following three operation modes, which are selectively enabled
during processor reset and remain in effect until the next processor reset. Refer to 7.13
Reset Operation for reset timing information. Table 7-10 summarizes the three special
modes and associates them with the appropriate IPLx signal.

7.14.1 Acknowledge Termination Ignore State Capability
The MC68060 provides acknowledge termination ignore state capability to make high-fre-
quency system design easier. This feature defines BCLK edges during which the acknowl-
edge termination signals (TA, TEA, and TRA) are ignored. This feature is enabled if IPL0 is
asserted during reset.

During reset, 16 bits of information (from D15–D0) are registered into the MC68060. These
16 bits define four values of four bits each. Two of the four values are used for read bus
cycles; the other two values are used for write bus cycles. For the read bus cycle, the first
value is the primary ignore state count value. The primary ignore state count value is used
during the first long-word transfer of a line transfer cycle, or the only data transfer for byte,
word, or long-word bus cycles. The second value is the secondary ignore state count value.
The secondary ignore state count value is used during the next three long words for line
transfer cycles, after the first long word has been transferred. Similarly, the two values of the
write bus cycle are defined as a primary ignore state count value and a secondary ignore
state count value, respectively. Figure 7-50 shows the assignment of the four data nibbles
at reset.

At the beginning of a bus cycle, the appropriate primary ignore state count value is loaded
into an internal counter. The counter decrements every BCLK rising edge. As long as the
counter has a non-zero count value, the MC68060 ignores the acknowledge termination sig-
nals. Once the counter reaches zero, the MC68060 asserts SAS for one BCLK period and
begins to sample the acknowledge termination signals and acts accordingly. For byte, word,
or long-word transfers, the bus cycle ends when a valid termination is detected. For line
transfer cycles after the first long-word transfer, the secondary ignore state count value is

Table 7-10. Special Mode vs. IPLx Signals

Signal
Value During
Reset Time

Action

IPL2
Asserted Extra Data Write Hold Mode Enabled
Negated Extra Data Write Hold Mode Disabled

IPL1
Asserted Native-MC68060 Acknowledge Termination Protocol
Negated MC68040 Acknowledge Termination Protocol

IPL0
Asserted Acknowledge Termination Ignore State Capability Enabled
Negated Acknowledge Termination Ignore State Capability Disabled

Figure 7-50. Data Bus Usage During Reset

15 12 11 38 7 4 0
READ PRIMARY

IGNORE STATE COUNT
READ SECONDARY

IGNORE STATE COUNT
WRITE PRIMARY

IGNORE STATE COUNT
WRITE SECONDARY

IGNORE STATE COUNT

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-5

• Instruction Trap

• Illegal and Unimplemented Instruction Exceptions

• Privilege Violation

• Trace

• Format Error

• Breakpoint Instruction

• Interrupt

• Reset

8.2.1 Access Error Exception

An access error exception occurs when a bus cycle is terminated with TEA (TA must be
negated if in MC68040 acknowledge termination mode) asserted externally or an internal
access error.

An external access error (bus error) occurs when external logic aborts a bus cycle and
asserts the TEA input signal (TA must be negated if in MC68040 acknowledge termination
mode).

 A bus error on an operand write access always results in an access error exception, causing
the processor to begin exception processing. However, the time of reporting this bus error
is a function of the instruction type and/or memory mapping of the destination pages. For
writes that are precise (this includes certain atomic instructions like TAS and CAS and ref-
erences to pages marked noncachable precise), the occurrence of a bus error causes the
pipeline to be aborted immediately and initiates exception processing. For writes that are
imprecise (stored in push or store buffers or reference to pages marked noncachable impre-
cise), the actual bus cycle is decoupled from the instruction which generated the access. For
these types of bus errors, the exception is taken, but the state of the processor may be
advanced from the actual instruction which generated the write.

For operand read accesses generating non-line-sized references, a bus error causes the
pipeline to be immediately aborted and initiates exception processing. This is also true if a
bus error occurs on the first transfer of a line-sized transfer. For a bus error that occurs on
the second, third, or fourth transfers of a line access, the line is not allocated in the cache
and no exception is reported. If a subsequent instruction references another operand within
the given line, another system bus cycle is generated and the bus error reported at that time
(i.e., as the subsequent reference receives a bus error on its initial transfer) and the excep-
tion is then taken.

Bus errors that are signaled during instruction prefetches are deferred until the processor
attempts to execute that instruction. At that time, the bus error is signaled and exception pro-
cessing is initiated. If a bus error is encountered during an instruction prefetch cycle, but the
corresponding instruction is never executed due to a change-of-flow in the instruction
stream, the bus error is discarded.

Exception Processing

8-10

M68060 USER’S MANUAL

MOTOROLA

Exception processing for illegal and unimplemented instructions is similar to that for instruc-
tion traps. When the processor has identified an illegal or unimplemented instruction, it ini-
tiates exception processing instead of attempting to execute the instruction. The processor
copies the SR, enters the supervisor mode, and clears T-bit, disabling further tracing. The
processor generates the vector number according to the exception type. The illegal or unim-
plemented instruction vector offset, current PC, and copy of the SR are saved on the super-
visor stack. Instruction execution resumes at the address contained in the exception vector.

8.2.5 Privilege Violation Exception

To provide system security, certain instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR FSAVE MOVEC PLPA

CINV MOVE from SR MOVES RESET

CPUSH MOVE to SR ORI to SR RTE

EORI to SR MOVE USP PFLUSH STOP

FRESTORE LPSTOP

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before executing
the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters the supervi-
sor mode, and clears the T-bit. The processor generates vector number 8, saves the privi-
lege violation vector offset, the current PC value, and the internal copy of the SR on the
supervisor stack. The saved value of the PC is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes after the initial
instruction is fetched from the address in the privilege violation exception vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an instruction-by-instruction
tracing capability. In the trace mode, an instruction generates a trace exception after the
instruction completes execution, allowing a debugging program to monitor execution of a
program.

In general terms, a trace exception is an extension to the function of any traced instruction.
The execution of a traced instruction is not complete until trace exception processing is com-
plete. If an instruction does not complete due to an access error or address error exception,
trace exception processing is deferred until after execution of the suspended instruction is
resumed. If an interrupt is pending at the completion of an instruction, trace exception pro-
cessing occurs before interrupt exception processing starts. If an instruction forces an
exception as part of its normal execution, the forced exception processing occurs before the
trace exception is processed.

The T-bit in the supervisor portion of the SR controls tracing. The state of the T-bit when an
instruction begins execution determines whether the instruction generates a trace exception
after the instruction completes.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-10

M68060 USER’S MANUAL

MOTOROLA

Figure 9-7. General Arrangement of Bidirectional Pin Cells

Table 9-3. Boundary Scan Bit Definitions

Bit Cell Type Pin/Cell Name Pin Type

0 O.Pin A31 I/O
1 I.Pin A31 I/O
2 O.Pin A30 I/O
3 I.Pin A30 I/O
4 IO.Ctl A31–A28 ena —
5 O.Pin A29 I/O
6 I.Pin A29 I/O
7 O.Pin A28 I/O
8 I.Pin A28 I/O
9 O.Pin A27 I/O
10 I.Pin A27 I/O
11 O.Pin A26 I/O
12 I.Pin A26 I/O
13 IO.Ctl A27–A24 ena —
14 O.Pin A25 I/O
15 I.Pin A25 I/O
16 O.Pin A24 I/O
17 I.Pin A24 I/O
18 O.Pin A23 I/O
19 I.Pin A23 I/O
20 O.Pin A22 I/O
21 I.Pin A22 I/O
22 IO.Ctl A23–A20 ena —
23 O.Pin A21 I/O
24 I.Pin A21 I/O
25 O.Pin A20 I/O
26 I.Pin A20 I/O
27 O.Pin A19 I/O
28 I.Pin A19 I/O
29 O.Pin A18 I/O
30 I.Pin A18 I/O
31 IO.Ctl A19–A16 ena —

FROM
LAST CELL

OUTPUT
DATA

INPUT
DATA

OUTPUT
ENABLE

TO NEXT CELL

TO NEXT
PIN PAIR

I/O.CTL

O.PIN

I.PIN

EN I/O
 PIN

Electrical and Thermal Characteristics

MOTOROLA

M68060 USERÕS MANUAL

12-7

Figure 12-3. Read/Write Timing

CLK

CLKEN

BCLK

ADDRESS &
ATTRIBUTES

D31ÐD0 in
(READ)

D31ÐD0 out
(WRITE)

TS

TIP

SAS

TA, TRA, TEA,
TBI, TCI

AVEC

60

13

14

15

18 21

23

25

16

19

24

22

58

57

12

12

11

PRECONDITIONED DATA OR WRITE DATA FROM PREVIOUS

17

 BUS CYCLE USING EXTRA DATA WRITE HOLD MODE

NOTE: Address and attributes refer to the following signals:
A31ÐA0, SIZ1, SIZ0, R/W, TT1, TT0, TM2ÐTM0, TLN1, TLN0, UPA1, UPA0, CIOUT, BS3-BS0

MC68060 Instructions

D-10

M68060 USER’S MANUAL

MOTOROLA

Table D-3. Exception Vector Assignments for the M68000 Family

Vector
Number(s)

Vector
Offset (Hex)

Assignment

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 00C Address Error
4 010 Illegal Instruction
5 014 Integer Divide-by-Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)
12 030 (Reserved)
13 034 Coprocessor Protocol Violation (Defined for MC68020 and MC68030)
14 038 Format Error
15 03C Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0–15 Instruction Vectors

48 0C0 Floating-Point Branch or Set on Unordered Condition
(Defined for MC68881, MC68882, MC68040, and MC68060)

49 0C4 Floating-Point Inexact Result
(Defined for MC68881, MC68882, MC68040, and MC68060)

50 0C8 Floating-Point Divide-by-Zero
(Defined for MC68881, MC68882, MC68040, and MC68060)

51 0CC Floating-Point Underflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

52 0D0 Floating-Point Operand Error
(Defined for MC68881, MC68882, MC68040, and MC68060)

53 0D4 Floating-Point Overflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

54 0D8 Floating-Point Signaling NAN
(Defined for MC68881, MC68882, MC68040, and MC68060)

55 0DC Floating-Point Unimplemented Data Type
(Defined for MC68040 and MC68060)

56 0E0 MMU Configuration Error (Defined for MC68030 and MC68851)
57 0E4 MMU Illegal Operation Error (Defined for MC68851)
58 0E8 MMU Access Level Violation Error (Defined for MC68851)
59 0EC (Unassigned, Reserved)
60 0F0 Unimplemented Effective Address (Defined for MC68060)
61 0F4 Unimplemented Integer Instruction (Defined for MC68060)

62–63 0F8–0FC (Unassigned, Reserved)
64–255 100–3FC User Defined Vectors (192)

