
Freescale Semiconductor - MC68EC060ZU75 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 75MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 304-LBGA Exposed Pad

Supplier Device Package 304-TBGA (31x31)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68ec060zu75

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68ec060zu75-4468472
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Table of Contents

MOTOROLA

M68060 USER’S MANUAL

xi

Section 3
Integer Unit

3.1 Integer Unit Execution Pipelines ... 3-1
3.2 Integer Unit Register Description .. 3-2
3.2.1 Integer Unit User Programming Model ... 3-2
3.2.1.1 Data Registers (D7–D0) ... 3-2
3.2.1.2 Address Registers (A6–A0) .. 3-2
3.2.1.3 User Stack Pointer (A7) .. 3-2
3.2.1.4 Program Counter .. 3-3
3.2.1.5 Condition Code Register .. 3-3
3.2.2 Integer Unit Supervisor Programming Model.. 3-3
3.2.2.1 Supervisor Stack Pointer .. 3-4
3.2.2.2 Status Register ... 3-4
3.2.2.3 Vector Base Register.. 3-4
3.2.2.4 Alternate Function Code Registers... 3-5
3.2.2.5 Processor Configuration Register... 3-5

Section 4
Memory Management Unit

4.1 Memory Management Programming Model.. 4-3
4.1.1 User and Supervisor Root Pointer Registers.. 4-3
4.1.2 Translation Control Register ... 4-4
4.1.3 Transparent Translation Registers ... 4-6
4.2 Logical Address Translation.. 4-7
4.2.1 Translation Tables .. 4-7
4.2.2 Descriptors.. 4-12
4.2.2.1 Table Descriptors.. 4-12
4.2.2.2 Page Descriptors .. 4-12
4.2.2.3 Descriptor Field Definitions... 4-13
4.2.3 Translation Table Example ... 4-15
4.2.4 Variations in Translation Table Structure.. 4-16
4.2.4.1 Indirect Action... 4-16
4.2.4.2 Table Sharing Between Tasks.. 4-17
4.2.4.3 Table Paging .. 4-17
4.2.4.4 Dynamically Allocated Tables... 4-17
4.2.5 Table Search Accesses .. 4-19
4.2.6 Address Translation Protection... 4-20
4.2.6.1 Supervisor and User Translation Tables .. 4-21
4.2.6.2 Supervisor Only .. 4-22
4.2.6.3 Write Protect ... 4-22
4.3 Address Translation Caches... 4-24
4.4 Transparent Translation.. 4-27
4.5 Address Translation Summary.. 4-28
4.6 RSTI and MDIS Effect on the MMU .. 4-28
4.6.1 Effect of RSTI on the MMUs ... 4-28

MOTOROLA

M68060 USER’S MANUAL

2-1

SECTION 2
SIGNAL DESCRIPTION

This section contains brief descriptions of the MC68060 signals in their functional groups
(see Figure 2-1). Each signal’s function is briefly explained, referencing other sections con-
taining detailed information about the signal and related operations. Table 2-1 lists the
MC68060 signal names, mnemonics, and functional descriptions of the signals. Timing
specifications for these signals can be found in

Section 12 Electrical and Thermal Char-
acteristics

.

NOTE

Assertion

 and

negation

 are used to specify forcing a signal to a
particular state.

Assertion

 and

assert

 refer to a signal that is ac-
tive or true.

Negation

 and

negate

 refer to a signal that is inactive
or false. These terms are used independently of the voltage level
(high or low) that they represent.

Table 2-1. Signal Index

Signal Name Mnemonic Function

Address Bus A31–A0 32-bit address bus used to address any of 4-Gbytes.
Cycle Long-Word Ad-
dress CLA Controls the operation of A3 and A2 during bus cycles.

Data Bus D31–D0 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

Transfer Type TT1,TT0 Indicates the general transfer type: normal, MOVE16, alternate logical function
code, and acknowledge.

Transfer Modifier TM2–TM0 Indicates supplemental information about the access.

Transfer Line Number TLN1,TLN0 Indicates which cache line in a set is being pushed or loaded by the current line
transfer cycle.

User-Programmable
Attributes UPA1,UPA0 User-defined signals, controlled by the corresponding user attribute bits from the

address translation entry.
Read/Write R/W Identifies the transfer as a read or write.

Transfer Size SIZ1,SIZ0
Indicates the data transfer size. These signals, together with A0 and A1,
define the active sections of the data bus. Alternately, BS3–BS0 can be used for
this function.

Bus Lock LOCK Indicates a bus cycle is part of a read-modify-write operation and that the
sequence of bus cycles should not be interrupted.

Bus Lock End LOCKE Indicates the current bus cycle is the last in a locked sequence of bus cycles.
Cache Inhibit Out CIOUT Indicates the processor will not cache the current bus transfer information.

Byte Select BS3–BS0 Indicate which bytes within a long word are selected and which data bus bytes
are valid.

Transfer Start TS Indicates the beginning of a bus cycle.
Transfer in Progress TIP Asserted for the duration of a bus cycle.
Starting Termination Ac-
knowledge Signal Sam-
pling

SAS Indicates the MC68060 will begin sampling the termination acknowledge signals.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Integer Unit

3-2

M68060 USER’S MANUAL

MOTOROLA

The operation of the instruction fetch unit (IFU) and the OEPs are decoupled by a 96-byte
FIFO instruction buffer. The IFU prefetches instructions every processor clock cycle, stop-
ping only if the instruction buffer is full or encountering a wait condition due to instruction
fetch address translation or cache miss. The OEPs attempt to read instructions from the
instruction buffer and execute them every clock cycle, stopping only if full instruction infor-
mation is not present in the buffer or due to operand pipeline wait conditions.

3.2 INTEGER UNIT REGISTER DESCRIPTION

The following paragraphs describe the integer unit registers in the user and supervisor pro-
gramming models. Refer to

Section 4 Memory Management Unit

 for details on the MMU
programming model and

Section 6 Floating-Point Unit

 for details on the FPU program-
ming model.

3.2.1 Integer Unit User Programming Model

Figure 3-2 illustrates the integer unit portion of the user programming model. The model is
the same as for previous M68000 family microprocessors, consisting of the following regis-
ters:

• 16 General-Purpose 32-Bit Registers (D7–D0, A7–A0)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

3.2.1.1 DATA REGISTERS (D7–D0).

Registers D7–D0 are used as data registers for bit
and bit field (1- to 32-bit), byte (8-bit), word (16-bit), long-word (32-bit), and quad-word (64-
bit) operations. These registers may also be used as index registers.

3.2.1.2 ADDRESS REGISTERS (A6–A0).

These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used for
word and long-word operations.

3.2.1.3 USER STACK POINTER (A7).

A7 is used as a hardware stack pointer during
implicit or explicit stacking for subroutine calls and exception handling. The register desig-
nation A7 refers to the user stack pointer (USP) in the user programming model and to the

Figure 3-2. Integer Unit User Programming Model

A0
A1
A2
A3
A4
A5
A6

A7
(USP)

PC

ADDRESS
REGISTERS

USER
STACK
POINTER
PROGRAM
COUNTER

CCR
CONDITION
CODE
REGISTER

01531

0715

031

01531

MOTOROLA

M68060 USER’S MANUAL

4-1

SECTION 4
MEMORY MANAGEMENT UNIT

NOTE

This section does not apply to the MC68EC060. Refer to

Appendix B MC68EC060

for details.

The MC68060 supports a demand-paged virtual memory environment. Demand means that
programs request permission to use memory area by accessing logical addresses, and
paged means that memory is divided into blocks of equal size, called page frames. Each
page frame is divided

into pages of the same size. The operating system assigns pages to
page frames as they are required to meet the needs of the program.

The MC68060 memory management includes the following features:

• Independent Instruction and Data Memory Management Units (MMUs)

• 32-Bit Logical Address Translation to 32-Bit Physical Address

• User-Defined 2-Bit Physical Address Extension

• Addresses Translated in Parallel with Indexing into Data or Instruction Cache

• 64-Entry Four-Way Set-Associative Address Translation Cache (ATC) for Each MMU
(128 Total Entries)

• Global Bit Allowing Flushes of All Nonglobal Entries from ATCs

• Selectable 4- or 8-Kbyte Page Size

• Separate Supervisor and User Translation Tables

• Two Independent Blocks for Each MMU Can Be Defined as Transparent (Untranslated)

• Three-Level Translation Tables with Optional Indirection

• Supervisor and Write Protections

• History Bits Automatically Maintained in Descriptors

• External Translation Disable Input Signal (MDIS) for Emulator Support

• Caching Mode Selected on Page Basis

• Default Transparent Translation

• Default Cache Mode and User Attributes

The MMUs completely overlap address translation time with other processing activities
when the translation is resident in the corresponding ATC. ATC accesses operate in parallel
with indexing into the on-chip instruction and data caches. The MMU MDIS signal dynami-
cally disables address translation for emulation and diagnostic support.

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-9

For 8-Kbyte pages, the five bits of the PGI field are multiplied by 4 (shifted to the left by two
bits) and concatenated with the fetched pointer-level descriptor’s upper 25 bits to produce
the physical address of the 8-Kbyte page descriptor. The upper 19 bits of the page descrip-
tor are the page frame’s physical address. There are 32 8-Kbyte page descriptors in a page-
level table.

Similarly, for 4-Kbyte pages, the six bits of the PGI field are multiplied by 4 (shifted to the left
by two bits) and concatenated with the fetched pointer-level descriptor’s upper 24 bits to pro-
duce the physical address of the 4-Kbyte page descriptor. The upper 20 bits of the page
descriptor are the page frame’s physical address. There are 64 4-Kbyte page descriptors in
a page-level table.

Write-protect status is accumulated from each level’s descriptor and combined with the sta-
tus from the page descriptor to form the ATC entry status. The MC68060 creates the ATC
entry from the page frame address and the associated status bits and uses this address and
attributes to generate a bus access. Refer to

4.3 Address Translation Caches

 for details
on ATC entries.

If the descriptor from a page table is an indirect descriptor, the page descriptor pointed to by
this descriptor is fetched. Invalid descriptors can be used at any level of the tree except the
root. When a table search for a normal translation encounters an invalid descriptor, the pro-
cessor takes an access error exception. The invalid descriptor can be used to identify either
a page or branch of the tree that has been stored on an external device and is not resident
in memory or a portion of the translation table that has not yet been defined. In these two
cases, the exception routine can either restore the page from disk or add to the translation
table. Figure 4-8 and Figure 4-9 illustrate detailed flowcharts of table search and descriptor
fetch operations.

A table search terminates successfully when a page descriptor is encountered. The occur-
rence of an invalid descriptor or a transfer error acknowledge also terminates a table search,
and the MC68060 takes an access error exception immediately on the data access and is
delayed for instruction fetches until the instruction is ready to be executed. The exception
handler should distinguish between anticipated conditions and true error conditions. The
exception handler can correct an invalid descriptor that indicates a nonresident page or one
that identifies a portion of the translation table yet to be allocated. An access error due to a
system malfunction can require the exception handler to write an error message and termi-
nate the task. The fault status long word (FSLW) of the access error stack frame provides
detailed information regarding the cause of the exception. Refer to

Section 8 Exception
Processing

 for more information on exception handling.

The processor does not use the data cache when performing a table search. Therefore,
translation tables must not be placed in copyback space, since the normal accesses which
build the translation tables would be cached and not written to external memory, but the pro-
cessor only uses tables in external memory. This is a functional difference between the
MC68060 and the MC68040.

Table and page descriptors must not be left in a state that is incoherent to the processor.
Violation of this restriction can result in an undefined operation. Page descriptors must not

Floating-Point Unit

6-14 M68060 USER’S MANUAL MOTOROLA

handled in this manner. If the destination data format is extended and there is a difference
between the infinitely precise intermediate result and the round-to-nearest result, the rela-
tive difference is 2–64 (the value of the guard bit). This error is equal to one-half of the least
significant bit’s value and is the worst case error that can be introduced when using the RN

Figure 6-9. Rounding Algorithm Flowchart

Result Integer 63-Bit Fraction Guard Round Sticky
Intermediate x xxx…x00 1 0 0

Rounded-to-Nearest x xxx…x00 0 0 0

ENTRY

INEX2 ➧ 1

GUARD ➧ 0
ROUND ➧ 0
STICKY ➧ 0

EXIT EXIT

GUARD, ROUND,
AND STICKY ARE

CHOPPED

SHIFT MANTISSA
RIGHT 1 BIT,

ADD 1 TO EXPONENT

ADD 1 TO
LSB

SELECT ROUNDING MODE

GUARD AND LSB = 1,
ROUND AND STICKY = 0

OR
GUARD = 1

ROUND OR STICKY = 1

INTERMEDIATE
RESULT

OVERFLOW = 1

GUARD, ROUND,
AND STICKY BITS = 0

EXACT RESULT

RPRMRN RZ

ADD 1 TO
LSB

INTERMEDIATE
RESULT

POS NEG POS NEG

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-27

6.6.3.1 TRAP DISABLED RESULTS (FPCR OPERR BIT CLEARED). For an FMOVE
OUT instruction with the format S, D, or X, an OPERR is impossible. For an FMOVE OUT
instruction with the format B, W, or L, an OPERR is possible only on an integer overflow, if
the source is an infinity, or if the source is a NAN. On the integer overflow and infinity source
cases, the largest positive or negative integer that can fit in the specified destination size (B,
W, or L) is stored. On the NAN source case, the 8, 16, or 32 most significant bits of the NAN
significand is stored in the B, W, or L destination.

For FMOVE OUT with the format P (packed decimal), if the k-factor is greater than +17, the
result returned is a packed decimal string that assumes a k-factor equal to +17. For packed
decimal results where the absolute value of the exponent is greater than 999, the decimal
string is returned with the three least significant exponent digits in EXP2, EXP1, and EXP0.
The fourth digit, EXP3, is supplied in the most significant four bits of the third byte in the
string.

For all other OPERR cases, the destination is a floating-point data register. An extended-
precision non-signaling NAN is stored in the destination.

6.6.3.2 TRAP ENABLED RESULTS (FPCR OPERR BIT SET). For the FMOVE OUT
cases, the destination is written as if the trap were disabled, and then control is passed to

Table 6-12. Possible Operand Errors Exceptions
Instruction Condition Causing Operand Error

Native to MC68060
FADD [(+∞) + (–∞)] or [(–∞) + (+∞)]
FDIV (0 ÷ 0) or (∞ ÷ ∞)
FMOVE to B,W,or L Integer overflow, source is nonsignaling NAN or ±∞
FMUL One operand is 0 and other is +∞
FSQRT (Source < 0) or (−∞)
FSUB [(+∞) – (+∞)] or [(–∞) – (–∞)]

Non-Native to MC68060
FACOS Source is ±∞, > +1, or < –1
FASIN Source is ±∞, > +1, or < –1
FATANH Source is ±∞, > +1, or < –1
FCOS Source is ±∞
FGETEXP Source is ±∞
FGETMAN Source is ±∞
FLOG10 Source is < 0 or −∞
FLOG2 Source is < 0 or −∞
FLOGN Source is < 0 or −∞
FLOGNP1 Source is ≤ 1 or −∞
FMOD Floating-point data register is ±∞ or source is 0, other operand is not a NAN
FMOVE to P Source exponent > 999 (decimal) or k-factor > 17
FREM Floating-point data register is ±∞ or source is 0, other operand is not a NAN
FSCALE Source is ±∞, other operand not a NAN
FSGLDIV (0 ÷ 0) or(∞ ÷ ∞)
FSGLMUL One operand is 0, other operand is ∞
FSIN Source is ±∞
FSINCOS Source is ±∞
FTAN Source is ±∞

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-35

When the user INEX exception handler has completed, the floating-point frame may be dis-
carded. The RTE instruction must be executed to return to normal instruction flow.

NOTE

The IEEE 754 standard specifies that inexactness should be sig-
naled on overflow as well as for rounding. The processor imple-
ments this via the INEX bit in the FPSR AEXC byte. However,
the standard also indicates that the inexact exception should be
taken if an overflow occurs with the OVFL bit disabled and the
INEX bit enabled in the FPSR AEXC byte. Therefore, the pro-
cessor takes the inexact exception if this combination of condi-
tions occurs, even though the INEX1 or INEX2 bit may not be set
in the FPSR EXC byte. In this case, the INEX bit is set in the
FPSR AEXC byte, and the OVFL bit is set in both the FPSR EXC
and AEXC bytes.

6.7 FLOATING-POINT STATE FRAMES
All floating-point arithmetic exception handlers must have FSAVE as the first floating-point
instruction; any other floating-point instruction causes another exception to be reported.
Once the FSAVE instruction has executed, the exception handler should use only the
FMOVEM instruction to read or write to the floating-point data registers since FMOVEM can-
not generate further exceptions or change the FPCR.

An FSAVE instruction is executed to save the current floating-point internal state for context
switches and floating-point exception handling. When an FSAVE is executed, the processor
waits until the FPU either completes the instruction or is unable to perform further process-
ing due to a pending exception that must be serviced.

FSAVE operations always write a floating-point state frame containing three long words.
The exception operand, is part of the EXCP frame. This exception operand retains its value
when FRESTOREd as an EXCP frame into the processor and then FSAVEd at a later time.
The FSAVE frame contents are shown in Figure 6-10 and the status word contents are
shown in Figure 6-11.

Bits 15–8 of the first long word of the floating-point frame define the frame format. The legal
formats for the MC68060 are:

$00 Null Frame (NULL)
$60 Idle Frame (IDLE)
$E0 Exception Frame (EXCP)

Figure 6-10. Floating-Point State Frame

EXCP Operand Exponent Status Word

EXCP Operand Lower 32 bits

EXCP Operand Upper 32 bits

31 016 15

Floating-Point Unit

6-36 M68060 USER’S MANUAL MOTOROLA

FSAVE on the MC68060 only generates one size frame (three long words), which creates a
significant performance benefit, and one of these three frame types. An attempt to
FRESTORE a frame format other than $00, $60, or $E0 results in a format error exception.

The format of the first long word of the MC68060 floating-point frame has changed from
that of previous M68000 microprocessors. The MC68060 frame format (bits 15–8) is a
consolidation of the version number and size format information (bits 31–16) on previous
parts. In addition, on the MC68060, this information resides in the lower word of the long
word while the upper word is used for the exception operand exponent in EXCP frames.
Therefore, FRESTORE of a frame on an MC68060 created by FSAVE on a non-MC68060
microprocessor and FRESTORE of a frame on a non-MC68060 microprocessor created by
FSAVE on an MC68060 will not guarantee a format error exception will be detected and
thus must never be attempted.

When an FSAVE is executed, the floating-point frame reflects the state of the FPU at the
time of the FSAVE. Internally, the FPU can be in the NULL, IDLE or EXCP states. Upon
reset, the FPU is in the NULL state. In the NULL state, all floating-point registers contain
nonsignaling NANs and the FPCR, FPSR, and FPIAR contain zeroes. The FPU remains in
this state until the execution of an implemented floating-point instruction (except FSAVE).
At this point, the FPU transitions from a NULL state to an IDLE state. An FRESTORE of
NULL returns the FPU to the NULL state. The EXCP state is entered as a result of either a
floating-point exception or an unsupported data type exception. V2–V0 indicates the
exception types that are associated with the EXCP state.

An FSAVE instruction always clears the internal exception status bit at the completion of
the FSAVE. An FRESTORE of EXCP may be used to place the FPU in the exception state.

The FRESTORE of an EXCP state is used in the M68060SP to provide to the user
exception handler the illusion that the M68060SP handler never existed at all. The user
exception handler is entered with the FPU in the proper exception state. The user

Figure 6-11. Status Word Contents

15

0 0 0 0 0

8

Frame Format
$00—Null Frame

$60—Idle Frame

V2–V0—Exception Vector
000—BSUN

001—INEX2 | INEX1

010—DZ

011—UNFL

100—OPERR

101—OVFL

110—SNAN

111—UNSUP

V2 V1 V0

012

FRAME FORMAT

$E0—Exception Frame

7 3

Bus Operation

7-34 M68060 USER’S MANUAL MOTOROLA

instruction boundary (following any higher priority exception). The IPEND signal negates
after the interrupt acknowledge bus cycle.

IPEND is intended to provide status information, and must not be used to replace the inter-
rupt acknowledge cycle. As such, normal applications do not rely on IPEND to disable inter-
rupts. Applications that use IPEND as a replacement for the interrupt acknowledge cycle are
neither recommended nor supported.

The MC68060 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
MC68060 executes at least one instruction in an interrupt exception handler before recog-
nizing another interrupt request. The following paragraphs describe the various kinds of
interrupt acknowledge bus cycles that can be executed as part of interrupt exception pro-
cessing. Table 7-4 provides a summary of the possible interrupt acknowledge terminations
and the exception processing results. Note that TRA must always be negated for proper
operation in the MC68040 acknowledge termination mode.

Figure 7-26. Assertion of IPEND

Table 7-4. Interrupt Acknowledge Termination Summary
Acknowledge
Termination

Mode
TA TEA TRA AVEC Termination Condition

Either High High High Don’t Care Insert Wait States
MC68040 High Low High Don’t Care

Take Spurious Interrupt Exception
Native-MC68060 Don’t Care Low Don’t Care Don’t Care

Either Low High High High Register Vector Number on D7–D0 and Take Inter-
rupt Exception

Either Low High High Low Take Autovectored Interrupt Exception
MC68040 Low Low High Don’t Care

Retry Interrupt Acknowledge Cycle
Native-MC68060 Don’t Care High Low Don’t Care

MC68040 Don’t Care Don’t Care Low Don’t Care Illegal Combination, Unsupported

CLK

IPL2–IPL0

IPEND

COMPARE REQUEST WITH MASK IN SR

ASSERT IPENDIPLx RECOGNIZED

IPLx SYNCHRONIZED

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-19

8.4 RETURN FROM EXCEPTIONS

Once the processor has completed processing of all exceptions, it must restore the machine
context at the time of the initial exception before returning control to the original process.

Since the MC68060 is a complete restart machine, when the processor executes an RTE
instruction, only three fields are referenced. The stack format is accessed (SP+6) and the
frame type is first verified. If the format indicates an invalid type, a format error exception is
signaled. Otherwise, the processor accesses the SR (SP) and PC (SP+2) fields from the top
of the supervisor stack. If the PC value defines an odd address (least significant address bit
is set), then an address error exception is signaled. Note that for the format error or the
address error, the new stack frame will contain the SR value at the time the RTE’s execution
began, i.e., the SR has not been corrupted by the execution of the RTE. For either fault, the
PC is the logical address of the RTE instruction.

Given a valid stack format and a nonfaulting PC, the SR and PC are loaded with the stack
operands, the SSP adjusted by the appropriate value determined by the format field, and
control passed to the location defined by the new PC.

When the processor writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned SP enhances exception processing perfor-
mance. The processor does not necessarily read or write the stack frame data in sequential
order. The following paragraphs discuss in detail each stack frame format.

Note that unlike any of the previous M68000 processors, the MC68060 RTE instruction
treats the access error frame no differently from other frames.

8.4.1 Four-Word Stack Frame (Format $0)

If a four-word stack frame is on the stack and an RTE instruction is encountered, the pro-
cessor updates the SR and PC with the data read from the stack, increments the stack
pointer by eight, and resumes normal instruction execution

Stack Frames Exception Types Stacked PC Points To

• Interrupt
• Format Error

• TRAP #N
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• Privilege Violation

• Floating-Point Pre-Instruction
• Unimplemented Integer

• Unimplemented Effective Ad-
dress

• Next Instruction
• RTE or FRESTORE Instruc-

tion
• Next Instruction
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• First Word of Instruction

 Causing Privilege Violation
• Floating-Point Instruction

• Unimplemented Integer In-
struction

• Instruction That Used the Un-
implemented Effective Ad-
dress

STATUS REGISTER

PROGRAM COUNTER

0 0 0 0 VECTOR OFFSET

015
SP

+$02

+$06

FOUR-WORD STACK FRAME–FORMAT $0

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-27

instruction is restarted, another table search is performed, and the instruction is executed
successfully. If the access is not allowed, it is up to the system software designer to deter-
mine appropriate action.

For the physical bus error cases, as long as it is not one of the non-recoverable write cases,
the exception handler must fix the page descriptor to point to a different physical memory,
so that when the restart of the instruction occurs, that bus error does not recur.

It is important to note that the MC68060 performs table searches in hardware, and does not
use the fetch table and page descriptors from the cache. The descriptor tables must be
placed in non-cachable memory so that when the exception handler touches these descrip-
tors, that the physical image in memory is updated properly.

The sixth step is to handle the default TTR cases. The default TTR is indicated if none of
these bits are set: TTR, PTA, PTB, IL and PF. At this point, only the following cases are pos-
sible:

• WP = 1 (write protection violation detected by default TTR)

• RE = 1 (bus error on read)

• WE = 1 (bus error on write)

These cases may be handled similarly to step three. If the exception handler has gotten to
this point, but none of the WP, RE and WE bits are set, and if the BPE bit is set and has
been handled by the first step, then execute an RTE.

8.4.6 Bus Errors and Pending Memory Writes
The MC68060 processor contains two different write buffers for pending memory write oper-
ations: the store buffer and the push buffer. The store buffer is used to optimize performance
by deferring bus write operations in write through and imprecise cache modes, and the push
buffer holds displaced copyback mode cache lines and line write data for the MOVE16
instruction.

The push buffer holds a displaced cache line destined for memory until the cache-miss bus
read access that caused the push completes. Imprecise cache modes (cachable write-
through and copyback, and cache inhibited, imprecise) use the write buffers of the MC68060
to optimize system performance. Cache inhibited precise mode provides a precise excep-
tion model for MC68060 operation, not utilizing the write buffers (store or push).

When the MC68060 detects an exception condition, all instruction execution is aborted and
the exception processing state is entered. Upon entering this state, the pipeline stalls until
both the store and push buffers are empty before beginning exception processing. If a TEA
signal termination occurs during a memory write cycle while emptying the store buffer, ‘a bus
error TEA on store buffer’ is recorded and the buffer sequences through all the remaining,
pending writes. However, if a TEA signal termination occurs during a memory write cycle
while emptying the push buffer, ‘a bus error TEA on push buffer’ is recorded and the memory
write operation is aborted immediately.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-13

130 O.Pin A5 I/O
131 I.Pin A5 I/O
132 IO.Ctl A5–A4 ena —
133 O.Pin A6 I/O
134 I.Pin A6 I/O
135 O.Pin A7 I/O
136 I.Pin A7 I/O
137 IO.Ctl A9–A6 ena —
138 O.Pin A8 I/O
139 I.Pin A8 I/O
140 O.Pin A9 I/O
141 I.Pin A9 I/O
142 O.Pin D31 I/O
143 I.Pin D31 I/O
144 O.Pin D30 I/O
145 I.Pin D30 I/O
146 IO.Ctl D31–D28 ena —
147 O.Pin D29 I/O
148 I.Pin D29 I/O
149 O.Pin D28 I/O
150 I.Pin D28 I/O
151 O.Pin D27 I/O
152 I.Pin D27 I/O
153 O.Pin D26 I/O
154 I.Pin D26 I/O
155 IO.Ctl D27–D24 ena —
156 O.Pin D25 I/O
157 I.Pin D25 I/O
158 O.Pin D24 I/O
159 I.Pin D24 I/O
160 O.Pin D23 I/O
161 I.Pin D23 I/O
162 O.Pin D22 I/O
163 I.Pin D22 I/O
164 IO.Ctl D23–D20 ena —
165 O.Pin D21 I/O
166 I.Pin D21 I/O
167 O.Pin D20 I/O
168 I.Pin D20 I/O
169 O.Pin D19 I/O
170 I.Pin D19 I/O
171 O.Pin D18 I/O
172 I.Pin D18 I/O
173 IO.Ctl D19–D16 ena —
174 O.Pin D17 I/O
175 I.Pin D17 I/O
176 O.Pin D16 I/O
177 I.Pin D16 I/O
178 O.Pin D15 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-20

M68060 USER’S MANUAL

MOTOROLA

 attribute INSTRUCTION_CAPTURE of MC68060: entity is "0101";
 attribute INSTRUCTION_PRIVATE of MC68060:entity is "PRIVATE";
 attribute REGISTER_ACCESS of MC68060:entity is
 "BOUNDARY (LPSAMPLE)";

 attribute IDCODE_REGISTER of MC68060: entity is
 "0001" & -- version
 "000001" & -- design center
 "0000110000" & -- sequence number
 "00000001110" & -- Motorola
 "1"; -- required by 1149.1

 attribute BOUNDARY_CELLS of MC68060:entity is
 "BC_1, BC_2, BC_4";

 attribute BOUNDARY_LENGTH of MC68060:entity is 214;

 attribute BOUNDARY_REGISTER of MC68060:entity is
 --num cell port function safe ccell dsval rslt
 "0 (BC_1, D(0), input, X), " &
 "1 (BC_2, D(0), output3, X, 4, 0, Z), " &
 "2 (BC_1, D(1), input, X), " &
 "3 (BC_2, D(1), output3, X, 4, 0, Z), " &
 "4 (BC_2, *, control, 0), " & -- d[3:0]
 "5 (BC_1, D(2), input, X), " &
 "6 (BC_2, D(2), output3, X, 4, 0, Z), " &
 "7 (BC_1, D(3), input, X), " &
 "8 (BC_2, D(3), output3, X, 4, 0, Z), " &
 "9 (BC_1, D(4), input, X), " &
 "10 (BC_2, D(4), output3, X, 13, 0, Z), " &
 "11 (BC_1, D(5), input, X), " &
 "12 (BC_2, D(5), output3, X, 13, 0, Z), " &
 "13 (BC_2, *, control, 0), " & -- d[7:4]
 "14 (BC_1, D(6), input, X), " &
 "15 (BC_2, D(6), output3, X, 13, 0, Z), " &
 "16 (BC_1, D(7), input, X), " &
 "17 (BC_2, D(7), output3, X, 13, 0, Z), " &
 "18 (BC_1, D(8), input, X), " &
 "19 (BC_2, D(8), output3, X, 22, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "20 (BC_1, D(9), input, X), " &
 "21 (BC_2, D(9), output3, X, 22, 0, Z), " &
 "22 (BC_2, *, control, 0), " & -- d[11:8]
 "23 (BC_1, D(10), input, X), " &
 "24 (BC_2, D(10), output3, X, 22, 0, Z), " &
 "25 (BC_1, D(11), input, X), " &
 "26 (BC_2, D(11), output3, X, 22, 0, Z), " &
 "27 (BC_1, D(12), input, X), " &
 "28 (BC_2, D(12), output3, X, 31, 0, Z), " &
 "29 (BC_1, D(13), input, X), " &
 "30 (BC_2, D(13), output3, X, 31, 0, Z), " &
 "31 (BC_2, *, control, 0), " & -- d[15:12]
 "32 (BC_1, D(14), input, X), " &
 "33 (BC_2, D(14), output3, X, 31, 0, Z), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-33

interrupts). The 32-bit instruction address of the first instruction of the emulator interrupt
exception handler is derived as with other exceptions—the memory contents of address
VBR + exception offset ($30).

The emulator mode entry from the breakpoint exception shares the same vector table entry
(VBR + $30) as the emulator interrupt exception. However, the emulator mode entry from
the breakpoint exception requires that the exception handler increment the stacked PC by
two to point to the instruction following the breakpoint instruction. On the other hand, the
emulator interrupt stack’s PC already points to the next instruction.

9.3 SWITCHING BETWEEN JTAG AND DEBUG PIPE CONTROL
MODES OF OPERATION

Since JTAG and the debug pipe control modes share the same set of pins, only one mode
can be used at a time. Normally, the JTAG mode is used only during product testing, and
the debug pipe control mode is used by the end user in conjunction with an in-circuit emu-
lator. For this use, the board manufacturer normally designs in whatever JTAG functionality
is required without regard to whether the board will eventually be used in the debug pipe
control mode or not. The responsibility of allowing the processor to operate under the debug
pipe control mode lies with the emulator vendor. The emulator vendor needs to ensure that
the socket built to carry the processor has the target system’s JTAG pins isolated from the
processor to allow full control of these pins. Hence, under normal circumstances, dynamic
switching between JTAG and debug pipe control modes is unnecessary.

However, for systems that need to switch between these modes can do so by following
some guidelines. These guidelines are illustrated in Figure 9-12 and Figure 9-13. These fig-
ures illustrate how to transition between the JTAG mode and the debug pipe control mode.

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-19

10.9 SHIFT/ROTATE EXECUTION TIMES
Table 10-13 indicates the number of clock cycles required for execution of the shift and
rotate instructions. The number of operand read and write cycles is shown in parentheses
(r/w). Where indicated, the number of clock cycles and r/w cycles must be added to those
required for effective address calculation.

10.10 BIT MANIPULATION AND BIT FIELD EXECUTION TIMES
Table 10-14 and Table 10-15 indicate the number of clock cycles required for execution of
the bit manipulation instructions. The execution times for the bit field instructions is shown
in Table 10-16. The number of operand read and write cycles is shown in parentheses (r/w).
Where indicated, the number of clock cycles and r/w cycles must be added to those required
for effective address calculation.

1 For entries in this column, add the effective address calculation time. These operations
are word-size only.

1 For entries in this column, add the effective address calculation
time.

Table 10-13. Shift/Rotate Execution Times
Instruction Size Register Memory1

ASL, ASR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

LSL, LSR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

ROL, ROR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

ROXL, ROXR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

Table 10-14. Bit Manipulation (Dynamic Bit Count)
Execution Times

Instruction Size Register Memory1

BCHG Byte — 1(1/1)
“ Long 1(0/0) —

BCLR Byte — 1(1/1)
“ Long 1(0/0) —

BSET Byte — 1(1/1)
“ Long 1(0/0) —

BTST Byte — 1(1/0)
“ Long 1(0/0) —

Ordering Information and Mechanical Data

MOTOROLA M68060 USER’S MANUAL 13-3

13.2.2 MC68060, MC68LC060, and MC68EC060

PIN GROUPS GND (VSS) VCC (VDD)

Internal Logic
2, 17, 24, 26, 27, 31, 46, 53, 64, 79, 90, 106,
113, 128, 142, 155, 169, 183, 197, 199

1, 18, 32, 53, 63, 78, 89, 105, 114, 127, 141,
156, 170, 184, 198

Output Drivers
4, 10, 42, 49, 58, 67, 73, 84, 87, 95, 100, 109,
117, 122, 131, 136, 145, 150, 161, 166, 175,
180, 189, 194, 204

6, 12, 40, 50, 60, 69, 75, 82, 92, 97, 102, 111,
119, 124, 133, 138, 147, 152, 159, 164, 173,
178, 187, 192, 202

(TOP VIEW)
208 PIN CQFP

122 SIGNAL PINS
50 EVDD/EVSS
36 IVDD/IVSS

1

53

156

D20

D21

A1
5

A1
4

EVSS

CLKEN

TRA

TA
PST0

EVSS

BG

TEA

EV
D

D

A1
7

EVDD

131

D19

D18
EVDD

D12

D17
D16
IVDD
IVSS
D15
D14
EVSS
D13
EVDD

D11
EVSS

EVDD
D9
D8
IVDD
IVSS
D7
D6
EVSS
D5
EVDD
D4
D3
EVSS

EVDD
D1
D0
IVSS
IVDD

D2

D10

EVDD
PST1

BGR
IVDD
IVSS

TBI
AVEC

TCI
IVSS
IVSS
CLK

IVSS

IPL0
IPL1

RSTI
IVDD
IVSS
CDIS
MDIS

BS3
BS2

EVDD
BS1

EVSS
BS0

JTAG
TMS

EVDD
TD0

EVSS
RST0
IVSS
IVDD

TC
K

TR
ST

TD
I

IP
EN

D
EV

SS
C

IO
U

T

IV
SS

TT
0

IV
D

D
IV

SS
A1

6

A2
3

IV
D

D
IV

SS

U
PA

0
U

PA
1

IV
SS

TT
1

EV
SS

A1
0

EV
D

D

EV
SS

A1
3

EV
D

D

EV
SS

A1
8

A1
9

A2
0

A2
2

EV
D

D

EV
SS

A2
1

A1
2

A1
1

IPL2

IV
D

D

SAS

�EVSS
EVDD

IVSS

BTT

�TIP
TS

IVDD
PST4
PST3
EVSS
PST2

D26

IVSS

D25

IVDD

D27

105

EVSS

EVDD
D24
IVSS
IVDD
D23
D22

EV
D

D

A2
4

A2
5

EV
SS

A2
6

EV
D

D
A2

7

A3
1

EV
SS

A2
9

EV
D

D
A3

0

A2
8

TM
1

EV
D

D

C
LAA0

IV
SS

IV
D

D
SN

O
O

P BB
TH

ER
M

1
EV

SS

IV
SS

TL
N

0

TM
2

IV
D

D
IV

SS

IV
SS A5

EV
D

D

EV
D

D
LO

C
K

LO
C

KE

SI
Z0

EV
SS

SI
Z1

EV
D

D

TL
N

1
EV

SS TM
0 A1

EV
D

D

EV
SS A2

IV
D

DA4A3
EV

SSR
/W

TH
ER

M
0

IV
D

DBR A6 A7
EV

SS A8
EV

D
D A9 D

28

EV
SS D
30

EV
D

D
D

29D
31

26

52
78 104

183208 157

QFP P
ACKAGE N

OT A
VAIL

ABLE

UPDATED 3/
25

/98

MC68060 Software Package

C-10

M68060 USER’S MANUAL

MOTOROLA

The condition code register upon return from all of the library routines is correct. Figure C-5
provides a C-code representation of the integer library routines in the M68060SP.

For example, to use a 64-bit divide instruction, do a “bsr” or “jsr” to the entry-point defined
by the MC68060ILSP entry table. A compiler-generated code sequence for unsigned multi-
ply could resemble Figure C-6.

The library routines also return the correct condition code register value. If this is important,
then the caller of the library routine must make sure that the value is not lost while popping
other items off of the stack. An example of using the CMP2 instruction is given in Figure C-7.

The unimplemented integer instruction library module contains no operating system depen-
dencies and does not require a call-out dispatch table. If the instruction being emulated is a

/* 64-bit (32x32 -> 64) unsigned multiply routine */
void _mulu64(multiplier,multiplicand,result)

unsigned int multiplier;
unsigned int multiplicand;
unsigned int *result; /* array for result */

/* 64-bit (32x32 -> 64) signed multiply routine */
void _muls64(multiplier,multiplicand,result)

int multiplier;
int multiplicand;
int *result; /* array for result */

/* 64-bit (32/32 -> 32r:32q) unsigned divide routine */
void _divu64(divisor,dividend_hi,dividend_lo,result)

unsigned int divisor;
unsigned int dividend_hi, dividend_lo;
unsigned int *result; /* array for result */

/* 64-bit (32/32 -> 32r:32q) signed divide routine */
void _divs64(divisor,dividend_hi,dividend_lo,result)

int divisor;
int dividend_hi,dividend_lo;
int *result; /* array for result */

/* CMP2 using an “A”ddress or “D”ata register. size = byte. */
void _cmp2_{D,A}b(rn,bounds)

int rn;
char *bounds; /* pointer to byte bounds array */

/* CMP2 using an “A”ddress or “D”ata register. size = word. */
void _cmp2_{D,A}w(rn,bounds)

int rn;
short *bounds; /* pointer to word bounds array */

/* CMP2 using an “A”ddress or “D”ata register. size = longword. */
void _cmp2_{D,A}l(rn,bounds)

int rn;
int *bounds; /* pointer to longword bounds array */

Figure C-5. C-Code Representation of Integer Library Routines

MC68060 Instructions

D-10

M68060 USER’S MANUAL

MOTOROLA

Table D-3. Exception Vector Assignments for the M68000 Family

Vector
Number(s)

Vector
Offset (Hex)

Assignment

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 00C Address Error
4 010 Illegal Instruction
5 014 Integer Divide-by-Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)
12 030 (Reserved)
13 034 Coprocessor Protocol Violation (Defined for MC68020 and MC68030)
14 038 Format Error
15 03C Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0–15 Instruction Vectors

48 0C0 Floating-Point Branch or Set on Unordered Condition
(Defined for MC68881, MC68882, MC68040, and MC68060)

49 0C4 Floating-Point Inexact Result
(Defined for MC68881, MC68882, MC68040, and MC68060)

50 0C8 Floating-Point Divide-by-Zero
(Defined for MC68881, MC68882, MC68040, and MC68060)

51 0CC Floating-Point Underflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

52 0D0 Floating-Point Operand Error
(Defined for MC68881, MC68882, MC68040, and MC68060)

53 0D4 Floating-Point Overflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

54 0D8 Floating-Point Signaling NAN
(Defined for MC68881, MC68882, MC68040, and MC68060)

55 0DC Floating-Point Unimplemented Data Type
(Defined for MC68040 and MC68060)

56 0E0 MMU Configuration Error (Defined for MC68030 and MC68851)
57 0E4 MMU Illegal Operation Error (Defined for MC68851)
58 0E8 MMU Access Level Violation Error (Defined for MC68851)
59 0EC (Unassigned, Reserved)
60 0F0 Unimplemented Effective Address (Defined for MC68060)
61 0F4 Unimplemented Integer Instruction (Defined for MC68060)

62–63 0F8–0FC (Unassigned, Reserved)
64–255 100–3FC User Defined Vectors (192)

MC68060 Instructions

D-14

M68060 USER’S MANUAL

MOTOROLA

FRESTORE

Restore Internal

FRESTORE

Floating-Point State

(MC68060 only)

The current implementation of the MC68060 supports the following four state frames:

NULL: This state frame has a frame format of $00. An FRESTORE operation with
this state frame is equivalent to a hardware reset of the floating-point unit.
The programmer’s model is set to the reset state, with nonsignaling NANs
in the floating-point data registers and zeros in the floating-point control reg-
ister, floating-point status register, and floating-point instruction address
register. (Thus, it is unnecessary to load the programmer’s model before
this operation.)

IDLE: This state frame has a frame format of $60. An FRESTORE operation with
this state frame causes the floating-point unit to be restored to the idle state,
waiting for the initiation of the next instruction, with no exceptions pending.
The programmer’s model is not affected by loading this type of state frame.

EXCP: This state frame has a frame format of $E0. An FRESTORE operation with
this state frame causes the floating-point unit to be restored to an excep-
tional state. The exception vector field defines the type of exception that is
pending. When in this state, initiation of any floating-point instruction with
the exception of FSAVE or another FRESTORE causes the pending excep-
tion to be taken.The floating-point unit remains in this state until an FSAVE
instruction is executed, then, it enters the idle state. The programmer’s
model is not affected by loading this type of state frame.

Floating-Point Status Register:

 Cleared if the state size is NULL; otherwise, not affected.

