
Motorola - MC68LC060BRC66 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 66MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature -40°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68lc060brc66

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68lc060brc66-4468516
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Introduction

1-22 M68060 USER’S MANUAL MOTOROLA

Rn Any Address or Data Register
Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.
Data Format and Type

+ inf Positive Infinity

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.
D Double-precision real data format (64 bits).

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in the
packed decimal format.

P Packed BCD real data format (96 bits, 12 bytes).
S Single-precision real data format (32 bits).
X Extended-precision real data format (96 bits, 16 bits unused).

– inf Negative Infinity
Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).
() Identifies an indirect address in a register.
[] Identifies an indirect address in memory.
bd Base Displacement
dn Displacement Value, n Bits Wide (example: d16 is a 16-bit displacement).

LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.
Register Codes

* General Case.
C Carry Bit in CCR
cc Condition Codes from CCR
FC Function Code
N Negative Bit in CCR
U Undefined, Reserved for Motorola Use.
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR
— Not Affected or Applicable.

Miscellaneous
<ea> Effective Address

<label> Assemble Program Label
<list> List of registers, for example D3–D0.

LB Lower Bound
m Bit m of an Operand

m–n Bits m through n of Operand
UB Upper Bound

Table 1-4. Notational Conventions (Continued)

Memory Management Unit

4-2

M68060 USER’S MANUAL

MOTOROLA

Figure 4-1 illustrates the MMUs contained in the two memory units, one for instructions (sup-
porting instruction prefetches) and one for data (supporting all other accesses). Each MMU
contains a 64-entry ATC, two transparent translation registers (TTRs), and control logic. The
ATCs hold recently used logical to physical address translations, cache mode and protec-
tion information, and whether or not the page has been written. The TTRs are used for defin-
ing the cache modes, enabling protection modes and defining user page attributes for large
regions of untranslated address space. Each MMU also allows enabling a default cache
mode, protection, and user page attributes for address regions not covered by the ATC or
TTRs.

One of the principal functions of the MMU is to provide logical to physical address translation
using translation tables stored in memory. As an MMU receives a request from the corre-
sponding pipe unit, its ATC is searched for the translation, using the upper logical address
bits as a tag. If the translation is resident (or one of the TTRs hit causing transparent trans-
lation), the MMU provides the physical address for the corresponding cache lookup. If the
translation is not in the ATC (and the TTRs miss), then a table search is done using trans-
lation tables stored in memory. When the translation is obtained, it is used for the cache
lookup, and is placed in the ATC for future use. The table search is performed automatically
by the MC68060 using on-chip logic.

Figure 4-1. Memory Management Unit

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

Memory Management Unit

4-20

M68060 USER’S MANUAL

MOTOROLA

updated before the MC68060 allows a page to be accessed. Table 4-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and read
or write access type.

An alternate address space access is a special case that is immediately used as a physical
address without translation. Because the MC68060 implements a merged instruction and
data space, instruction address spaces (SFC/DFC = $6 or $2) using the MOVES instruction
are converted into data references (SFC/DFC = $5 or $1). The data memory unit handles
these translated accesses as normal data accesses. If the access fails due to an ATC fault
or a physical bus error, the resulting access error stack frame contains the converted func-
tion code in the TM field for the faulted access. If the MOVES instruction is used to write
instruction address space, then to maintain cache coherency, the corresponding addresses
must be invalidated in the instruction cache. The SFC and DFC values and results for nor-
mal (TT = 0) and for MOVES (TT = 10) accesses are listed in Table 4-2.

4.2.6 Address Translation Protection

The MC68060 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each table
and page descriptor includes a write-protect (W) bit that can be set to provide write protec-

Table 4-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status
WP Bit

Access
Type

Page Descriptor
 Update Operation

New Status
U-Bit M-Bit U-Bit M-Bit

0 0

X Read

Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 0 None 1 0
1 1 None 1 1
0 0

0

Write

Write to Set U and M 1 1
0 1 Write to Set U 1 1
1 0 Write to Set M 1 1
1 1 None 1 1
0 0

1

None 0 0
0 1 None 0 1
1 0 None 1 0
1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

Table 4-2. SFC and DFC Values

SFC/DFC Value
Results

TT TM

000 10 000
001 00 001
010 00 001
011 10 011
100 10 100
101 00 101
110 00 101
111 10 111

Caches

MOTOROLA

M68060 USER’S MANUAL

5-5

Operands of locked instructions (CAS and TAS) and operand references while the lock bit
in the bus control register is set which miss in the data cache do not allocate for reads or
writes regardless of the caching mode, and therefore will bypass the cache. Locked instruc-
tions that hit in the data cache invalidate a matching valid entry or will push and invalidate a
matching dirty entry. The locked operand access will then bypass the cache.

5.2 CACHE CONTROL REGISTER

The cache control register (CACR) is a 32-bit register which contains control information for
the instruction and data caches. A MOVEC sets all of the bits in the CACR. A hardware reset
clears the CACR, disabling both caches; however, reset does not affect the tags, state infor-
mation, and data within the caches. The CACR is illustrated in Figure 5-5.

EDC—Enable Data Cache
0 = Data cache is disabled.
1 = Data cache is enabled.

NAD—No Allocate Mode (Data Cache)
0 = Read and write misses will allocate in the data cache.
1 = Read and write misses will not allocate in the data cache.

ESB—Enable Store Buffer
0 = All writes to writethrough or cache-inhibited imprecise pages will bypass the store

buffer and generate bus cycles directly.
1 = The four entry first-in-first-out (FIFO) store buffer to the MC68060 is enabled. This

buffer is used to defer pending writes to writethrough or cache-inhibited imprecise
pages to maximize performance.

Locked write accesses and accesses to cache-inhibited precise pages always bypass the
store buffer.

DPI—Disable CPUSH Invalidation
0 = Each cache line is invalidated as it is pushed. Affects only the data cache.
1 = CPUSHed lines remain valid in the cache.

FOC—1/2 Cache Operation Mode Enable (Data Cache)
0 = The data cache operates in normal, full-cache mode.
1 = The data cache operates in 1/2-cache mode.

31 30 29 28 27 26 24 23 22 21 20 16 15 14 13 12 0

EDC NAD ESB DPI FOC 0 0 0 EBC CABC CUBC 0 0 0 0 0 EIC NAI FIC 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-5. Cache Control Register

Caches

MOTOROLA

M68060 USER’S MANUAL

5-7

data cache is disabled for the second half of the operand. Internal accesses always bypass
the instruction and data caches while CDIS is recognized, and the contents of the caches
are unchanged. Disabling the caches with CDIS does not affect snoop operations. CDIS is
intended primarily for use by in-circuit emulators to allow swapping between the tags and
emulator memories.

The privileged CINV and CPUSH instructions support cache management, by selectively
pushing and/or invalidating an individual cache line, a full page, or an entire cache, for either
or both instruction and data caches. CINV allows selective invalidation of cache entries. The
CPUSH instruction will either push and invalidate all matching lines, or push and leave the
line valid, depending on the state of the DPI bit of the CACR register. (Note that only CPUSH
instructions which specify the data cache are affected by the DPI bit. Since the instruction
cache cannot have dirty data, a CPUSH specifying the instruction cache is interpreted as a
CINV instruction.) Because of the size of the caches, pushing pages or an entire cache may
incur a significant time penalty. Therefore, the CPUSH instruction may be interrupted to
avoid large interrupt latencies. The state of the CDIS signal or the cache enable or no-allo-
cate bits in the CACR does not affect the operation of CINV and CPUSH.

5.4 CACHING MODES

Every cache access has an associated caching mode from the MMU that determines how
the cache handles the access. An access can be cachable in either the writethrough or
copyback modes, or it can be cache inhibited in precise or imprecise modes. The CM field
(from the transparent translation register (TTR) or MMU translation table page descriptor)
corresponding to the logical address of the access normally specifies, on a page-by-page
basis, one of these caching modes. When the cache is enabled and memory management
is disabled, the default caching mode is writethrough.

The MMU provides the cache mode user page attributes (UPAx) and write protection for
each access. This information may come from a TTR which matches or from the MMU trans-
lation tables via the ATC. If both the TTR and the ATC match the access, the TTR provides
the information. If the paging MMU is disabled (TCR bit clear) and neither TTR matches,
then the cache mode, UPAx, and write protection will be that which is specified in the default
bits of the TCR. After reset, the defaults are writethrough cache mode, UPAx bits are zero,
and all addresses may be written.

The TTRs and MMUs allow the defaults to be overridden. In addition, some instructions and
integer unit operations perform data accesses that have an implicit caching mode associ-
ated with them. The following paragraphs discuss the different caching accesses and their
related cache modes.

5.4.1 Cachable Accesses

If the CM field of a page descriptor, TTR, or default field of the TCR indicates writethrough
or copyback, then the access is cachable. A read access to a writethrough or copyback page
is read from the cache if matching data is found. Otherwise, the data is read from memory
and used to update the cache. Since instruction cache accesses are always reads, the
selection of writethrough or copyback modes do not affect them. The following paragraphs
describe the writethrough and copyback modes in detail.

Floating-Point Unit

6-4

M68060 USER’S MANUAL

MOTOROLA

The processor supports four rounding modes specified by the IEEE 754 standard. These
modes are round to nearest (RN), round toward zero (RZ), round toward plus infinity (RP),
and round toward minus infinity (RM). The RP and RM modes are directed rounding modes
that are useful in interval arithmetic. Rounding is accomplished through the intermediate
result. Single-precision results are rounded to a 24-bit boundary; double-precision results
are rounded to a 53-bit boundary; and extended-precision results are rounded to a 64-bit
boundary. Table 6-1 lists the encoding for the rounding mode. Table 6-2 lists the encoding
for rounding precision.

6.1.3 Floating-Point Status Register (FPSR)

The FPSR (see Figure 6-2) contains a floating-point condition code byte (FPCC), a quotient
byte, a floating-point exception status byte (EXC), and a floating-point accrued exception
byte (AEXC). The user can read or write to all defined bits in the FPSR. Execution of most
floating-point instructions modifies this register. The reset function or a restore operation of
the null state clears the FPSR. Floating-point conditional operations are not guaranteed if
the FPSR is written directly, because the FPSR is only valid as a result of a floating-point
instruction.

Figure 6-3.

Floating-Point Control Register Format

Table 6-1. RND Encoding

Encoding Rounding Mode

0 0 To Nearest (RN)
0 1 Toward Zero (RZ)
1 0 Toward Minus Infinity (RM)
1 1 Toward Plus Infinity (RP)

Table 6-2. PREC Encoding

Encoding Rounding Precision

0 0 Extend (X)
0 1 Single (S)
1 0 Double (D)
1 1 Undefined

15 14

EXCEPTION ENABLE

12 11 10 9 8

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE-BY-ZERO
UNDERFLOW
OVERFLOW
OPERAND ERROR
SIGNALING NOT-A-NUMBER
BRANCH/SET ON UNORDERED

7 6 5 4 3 2 1 0

SNAN OPERR OVFL UNFL DZ INEX2 INEX1BSUN PREC RND 0

ROUNDING PRECISION
ROUNDING MODE

MODE CONTROL

13

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-7

6.1.4 Floating-Point Instruction Address Register (FPIAR)

For the subset of the floating-point instructions that generate exception traps, the FPU loads
the 32-bit FPIAR with the logical address of the instruction before executing the instruction.
Because the integer unit can execute instructions while the FPU executes floating-point
instructions, the program counter (PC) value stacked by the MC68060 in response to a float-
ing-point exception handler may not point to the offending instruction. Therefore, a floating-
point exception handler uses the address in the FPIAR to locate a floating-point instruction
that has caused an exception. Since the FMOVE to/from the FPCR, FPSR, or FPIAR and
FMOVEM instructions cannot generate floating-point exceptions, these instructions do not
modify the FPIAR. However, they can be used to read the FPIAR in an exception handler
without changing the previous value. A reset or a restore operation of the null state clears
the FPIAR.

6.2 FLOATING-POINT DATA FORMATS AND DATA TYPES

The M68000 floating-point model (MC68881, MC68882, MC68040, and MC68060) supports
the following floating-point data formats: single precision, double precision, extended
precision, and packed decimal. The M68000 floating-point model supports the following
data types: normalized, zeros, infinities, unnormalized numbers, denormalized numbers,
and NANs. The MC68060 supports part of the M68000 floating-point model in hardware.
Table 6-3 lists the floating-point data formats and data types supported by the MC68060.
Table 6-4 through Table 6-7 summarize the floating-point data formats and data types
details.

*

Data Format/Type Supported by On-Chip MC68060 FPU Hardware

†

Data Format/Type Supported by Software (M68060SP)

New AEXC Bit = Old AEXC Bit + EXC Bits

IOP = IOP + (BSUN

+

 SNAN

+

 OPERR)
OVFL = OVFL + (OVFL)
UNFL = UNFL + (UNFL • INEX2)

DZ = DZ + (DZ)
INEX = INEX + (INEX1

+

 INEX2

+

 OVFL)

Table 6-3. MC68060 FPU Data Formats and Data Types

Number Types

Data Formats
Single-

Precision
Real

Double-
Precision

Real

Extended-
Precision

Real

Packed-
Decimal

Real

Byte
Integer

Word
Integer

Long-Word
Integer

Normalized * * * † * * *
Zero * * * † * * *
Infinity * * * † — — —
NAN * * * † — — —
Denormalized † † † † — — —
Unnormalized — — † † — — —

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-11

NOTE: EXP3 is generated only during an FMOVE OUT if the source is too large to be represented
with a three-digit exponent. Otherwise, it is a don’t care.

6.3 COMPUTATIONAL ACCURACY
Whenever an attempt is made to represent a real number in a binary format of finite preci-
sion, there is a possibility that the number can not be represented exactly. This is commonly
referred to as a round-off error. Furthermore, when two inexact numbers are used in a cal-
culation, the error present in each number is reflected, and possibly aggravated, in the
result. All FPU calculations use an intermediate result. When the MC68060 performs an
operation, the calculation is carried out using extended-precision inputs, and the intermedi-
ate result is calculated as if to produce infinite precision. After the calculation is complete,
the intermediate result is rounded to the selected precision and stored in the destination.

The FPCR RND and PREC encodings (see Table 6-1 and Table 6-2) provide emulation for
devices that only support single and double precision. By setting the rounding precision to
single, the MC68060 will perform all calculations as if only 24 bits of precision were available
for the result. Setting the rounding precision to double does the same to 53 bits of precision.
The execution speed of all instructions is the same whether using single- or double-precision
rounding. When using these two forced rounding precisions, the MC68060 produces the
same results as any other device that conforms to the IEEE 754 standard, but does not sup-
port extended precision. The results are the same when performing the same operation in
extended precision and storing the results in single- or double-precision format.

Approximate Ranges

Maximum Positive Normalized 1.2 × 104932

Minimum Positive Normalized 1.7 × 10–4932

Minimum Positive Denormalized 1.7 × 10–4951

Table 6-7. Packed Decimal Real Format Summary

Data Type SM SE Y Y
3-Digit

Exponent
1-Digit
Integer

16-Digit Fraction

±Infinity 0/1 1 1 1 $FFF $XXXX $00…00

±NAN 0/1 1 1 1 $FFF $XXXX Nonzero

±SNAN 0/1 1 1 1 $FFF $XXXX Nonzero

+Zero 0 0/1 X X $000–$999 $XXX0 $00…00

–Zero 1 0/1 X X $000–$999 $XXX0 $00…00
+In-Range 0 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

–In-Range 1 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

Table 6-6. Extended-Precision Real Format Summary (Continued)

SM SE Y Y EXP2 (EXP3) INTEGERX X X X X X X XEXP1 EXP0

FRAC15 FRAC8

FRAC7 FRAC0

95 64

63 32

31 0

FRAC14 FRAC13 FRAC12 FRAC11 FRAC10 FRAC9

FRAC6 FRAC5 FRAC4 FRAC3 FRAC2 FRAC1

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-65

The snoop state is similar to the AM-explicit own state in that the MC68060 does not have
ownership of the bus. The snoop state differs from the AM-explicit own state in that the
MC68060 is in the process of performing an internal snoop operation because the processor
has detected that TS and SNOOP are asserted and TT1 = 0. The snoop state always returns
to the AM-explicit own state. The implicit ownership state indicates that the MC68060 owns
the bus because BG is asserted to it. The processor, however, is not ready to begin a bus
cycle, and keeps BB negated and the bus three-stated until an internal bus request occurs.

The MC68060 explicitly owns the bus when the bus is granted to it (BG asserted) and it has
initiated at least one bus cycle. Until BG is negated, the processor retains explicit ownership
of the bus whether or not active bus cycles are being executed. When the processor is ready
to relinquish the bus, it goes through the end tenure state to indicate to all alternate masters
that it is relinquishing the bus. During the end tenure state, BTT is asserted for one BCLK
and is actively negated for the next BCLK prior to three-stating. While in this state, if RSTI
is asserted, the processor proceeds to the end tenure state to inform other bus masters it is
relinquishing the bus.

All alternate masters that reside in a system and use the MC68060-arbitration protocol must
provide the same functionality as the MC68060 for proper system operation.

7.11.3 External Arbiter Considerations
The bus arbitration state diagrams for the MC68040-arbitration protocol and MC68060-arbi-
tration protocol may be used to approximate the high level behavior of the processor. In
either case, it is assumed that all TS signals in a system are tied together, all BB signals in
a system are tied together and to a pullup resistor (MC68040-arbitration protocol), or all BTT
signals in a system are tied together and to a pullup resistor (MC68060-arbitration protocol).
Furthermore, unused BB or BTT pins must have separate pullup resistors.

If an alternate master loses bus ownership when it is in its implicit ownership state, the pro-
cessor checks TS. If TS is sampled asserted, the processor interprets this as the alternate
master transitioning to its explicit ownership state, and it does not take over bus ownership.
This operation is different from that of the MC68040, in that external arbiters are required to
check for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal.

When using the MC68040-arbitration protocol, as with the TS signal, the BB of all alternate
bus masters must be tied together to the processor’s BB signal. Also, when an alternate
master becomes bus master, it must assert BB if it initiates a bus cycle with the TS asserted.

The external arbiter design needs to include the function of BR. For example, in certain
cases associated with conditional branches, the MC68060 can assert BR to request the bus
from an alternate bus master, then negate BR without using the bus, regardless of whether
or not the external arbiter eventually asserts BG. This situation happens when the MC68060
attempts to prefetch an instruction for a conditional branch. To achieve maximum perfor-
mance, the processor may prefetch the instructions of the forward path for a conditional
branch. If the branch prediction is incorrect and if the conditional branch results in a branch-
not-taken, the previously issued branch-taken prefetch is then terminated since the prefetch

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-27

instruction is restarted, another table search is performed, and the instruction is executed
successfully. If the access is not allowed, it is up to the system software designer to deter-
mine appropriate action.

For the physical bus error cases, as long as it is not one of the non-recoverable write cases,
the exception handler must fix the page descriptor to point to a different physical memory,
so that when the restart of the instruction occurs, that bus error does not recur.

It is important to note that the MC68060 performs table searches in hardware, and does not
use the fetch table and page descriptors from the cache. The descriptor tables must be
placed in non-cachable memory so that when the exception handler touches these descrip-
tors, that the physical image in memory is updated properly.

The sixth step is to handle the default TTR cases. The default TTR is indicated if none of
these bits are set: TTR, PTA, PTB, IL and PF. At this point, only the following cases are pos-
sible:

• WP = 1 (write protection violation detected by default TTR)

• RE = 1 (bus error on read)

• WE = 1 (bus error on write)

These cases may be handled similarly to step three. If the exception handler has gotten to
this point, but none of the WP, RE and WE bits are set, and if the BPE bit is set and has
been handled by the first step, then execute an RTE.

8.4.6 Bus Errors and Pending Memory Writes
The MC68060 processor contains two different write buffers for pending memory write oper-
ations: the store buffer and the push buffer. The store buffer is used to optimize performance
by deferring bus write operations in write through and imprecise cache modes, and the push
buffer holds displaced copyback mode cache lines and line write data for the MOVE16
instruction.

The push buffer holds a displaced cache line destined for memory until the cache-miss bus
read access that caused the push completes. Imprecise cache modes (cachable write-
through and copyback, and cache inhibited, imprecise) use the write buffers of the MC68060
to optimize system performance. Cache inhibited precise mode provides a precise excep-
tion model for MC68060 operation, not utilizing the write buffers (store or push).

When the MC68060 detects an exception condition, all instruction execution is aborted and
the exception processing state is entered. Upon entering this state, the pipeline stalls until
both the store and push buffers are empty before beginning exception processing. If a TEA
signal termination occurs during a memory write cycle while emptying the store buffer, ‘a bus
error TEA on store buffer’ is recorded and the buffer sequences through all the remaining,
pending writes. However, if a TEA signal termination occurs during a memory write cycle
while emptying the push buffer, ‘a bus error TEA on push buffer’ is recorded and the memory
write operation is aborted immediately.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-14

M68060 USER’S MANUAL

MOTOROLA

179 I.Pin D15 I/O
180 O.Pin D14 I/O
181 I.Pin D14 I/O
182 IO.Ctl D15–D12 ena —
183 O.Pin D13 I/O
184 I.Pin D13 I/O
185 O.Pin D12 I/O
186 I.Pin D12 I/O
187 O.Pin D11 I/O
188 I.Pin D11 I/O
189 O.Pin D10 I/O
190 I.Pin D10 I/O
191 IO.Ctl D11–D8 ena —
192 O.Pin D9 I/O
193 I.Pin D9 I/O
194 O.Pin D8 I/O
195 I.Pin D8 I/O
196 O.Pin D7 I/O
197 I.Pin D7 I/O
198 O.Pin D6 I/O
199 I.Pin D6 I/O
200 IO.Ctl D7–D4 ena —
201 O.Pin D5 I/O
202 I.Pin D5 I/O
203 O.Pin D4 I/O
204 I.Pin D4 I/O
205 O.Pin D3 I/O
206 I.Pin D3 I/O
207 O.Pin D2 I/O
208 I.Pin D2 I/O
209 IO.Ctl D3–D0 ena —
210 O.Pin D1 I/O
211 I.Pin D1 I/O
212 O.Pin D0 I/O
213 I.Pin D0 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-15

9.1.3.3 BYPASS REGISTER.

An IEEE-1149.1-compliant bypass register has been
included on the MC68060. This register is a single bit in depth when connected between TDI
and TDO. The register element is in the shift path which operates during rising edges of TCK
while the TAP state machine is in the shift-DR state or captures a default state of logic 0
during the rising edge of TCK while the TAP state machine is in the capture-DR state.

9.1.4 Restrictions

The test logic is implemented using static logic design, and TCK can be stopped in either a
high or low state without loss of data. The system logic, however, operates on a different
system clock which is not synchronized to TCK internally. Any mixed operation requiring the
use of 1149.1 test logic in conjunction with system functional logic that uses both clocks,
must have coordination and synchronization of these clocks done externally to the
MC68060.

The MC68060 also includes an internal instruction known as LPSTOP which can place the
output pins in a high-impedance state, isolate the input pins from their internal signals, and
stop the internal clock. Special care must be taken to ensure that the JTAG logic does not
consume excess power during this mode if it is to be left inactive (see

9.1.5 Disabling the
IEEE 1149.1 Standard Operation

).

9.1.5 Disabling the IEEE 1149.1 Standard Operation

There are two methods by which the device can be used without the IEEE 1149.1 test logic
being active: 1) non-use of the JTAG test logic by either non-termination (disconnection) or
intentional fixing of TAP logic values, and 2) intentional disabling of the JTAG test logic by
assertion of the JTAG signal.

There are several considerations that must be addressed if the IEEE 1149.1 logic is not
going to be used once the MC68060 is assembled onto a board. The prime consideration is
to ensure that the IEEE 1149.1 test logic remains transparent and benign to the system logic
during functional operation. This requires the minimum of either connecting the TRST pin to
logic 0, or connecting the TCK clock pin to a clock source that will supply five rising edges
and the falling edge after the fifth rising edge, to ensure that the part enters the test-logic-
reset state. The recommended solution is to connect TRST to logic 0 since logic was
included to ensure that unterminated or fixed-value terminated pins consume the least
power during the LPSTOP functional state. Another consideration is that the TCK pin does
not have a pullup as is required on the TMS, TDI, and TRST pins; therefore, it should not be
left unterminated to preclude mid-level input values.

Figure 9-8. JTAG Bypass Register

1
MUX

1

G1

1D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-20

M68060 USER’S MANUAL

MOTOROLA

 attribute INSTRUCTION_CAPTURE of MC68060: entity is "0101";
 attribute INSTRUCTION_PRIVATE of MC68060:entity is "PRIVATE";
 attribute REGISTER_ACCESS of MC68060:entity is
 "BOUNDARY (LPSAMPLE)";

 attribute IDCODE_REGISTER of MC68060: entity is
 "0001" & -- version
 "000001" & -- design center
 "0000110000" & -- sequence number
 "00000001110" & -- Motorola
 "1"; -- required by 1149.1

 attribute BOUNDARY_CELLS of MC68060:entity is
 "BC_1, BC_2, BC_4";

 attribute BOUNDARY_LENGTH of MC68060:entity is 214;

 attribute BOUNDARY_REGISTER of MC68060:entity is
 --num cell port function safe ccell dsval rslt
 "0 (BC_1, D(0), input, X), " &
 "1 (BC_2, D(0), output3, X, 4, 0, Z), " &
 "2 (BC_1, D(1), input, X), " &
 "3 (BC_2, D(1), output3, X, 4, 0, Z), " &
 "4 (BC_2, *, control, 0), " & -- d[3:0]
 "5 (BC_1, D(2), input, X), " &
 "6 (BC_2, D(2), output3, X, 4, 0, Z), " &
 "7 (BC_1, D(3), input, X), " &
 "8 (BC_2, D(3), output3, X, 4, 0, Z), " &
 "9 (BC_1, D(4), input, X), " &
 "10 (BC_2, D(4), output3, X, 13, 0, Z), " &
 "11 (BC_1, D(5), input, X), " &
 "12 (BC_2, D(5), output3, X, 13, 0, Z), " &
 "13 (BC_2, *, control, 0), " & -- d[7:4]
 "14 (BC_1, D(6), input, X), " &
 "15 (BC_2, D(6), output3, X, 13, 0, Z), " &
 "16 (BC_1, D(7), input, X), " &
 "17 (BC_2, D(7), output3, X, 13, 0, Z), " &
 "18 (BC_1, D(8), input, X), " &
 "19 (BC_2, D(8), output3, X, 22, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "20 (BC_1, D(9), input, X), " &
 "21 (BC_2, D(9), output3, X, 22, 0, Z), " &
 "22 (BC_2, *, control, 0), " & -- d[11:8]
 "23 (BC_1, D(10), input, X), " &
 "24 (BC_2, D(10), output3, X, 22, 0, Z), " &
 "25 (BC_1, D(11), input, X), " &
 "26 (BC_2, D(11), output3, X, 22, 0, Z), " &
 "27 (BC_1, D(12), input, X), " &
 "28 (BC_2, D(12), output3, X, 31, 0, Z), " &
 "29 (BC_1, D(13), input, X), " &
 "30 (BC_2, D(13), output3, X, 31, 0, Z), " &
 "31 (BC_2, *, control, 0), " & -- d[15:12]
 "32 (BC_1, D(14), input, X), " &
 "33 (BC_2, D(14), output3, X, 31, 0, Z), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-22

M68060 USER’S MANUAL

MOTOROLA

 "86 (BC_2, *, control, 0), " & -- a[3:2]
 "87 (BC_1, A(3), input, X), " &
 "88 (BC_2, A(3), output3, X, 86, 0, Z), " &
 "89 (BC_1, A(2), input, X), " &
 "90 (BC_2, A(2), output3, X, 86, 0, Z), " &
 "91 (BC_1, CLA, input, X), " &
 "92 (BC_2, *, control, 0), " & -- a[1:0]
 "93 (BC_1, A(1), input, X), " &
 "94 (BC_2, A(1), output3, X, 92, 0, Z), " &
 "95 (BC_1, A(0), input, X), " &
 "96 (BC_2, A(0), output3, X, 92, 0, Z), " &
 "97 (BC_2, TM(2), output3, X, 99, 0, Z), " &
 "98 (BC_2, TM(1), output3, X, 99, 0, Z), " &
 "99 (BC_2, *, control, 0), " & -- tln(1),tm[2:0]
 --num cell port function safe ccell dsval rslt
 "100 (BC_2, TM(0), output3, X, 99, 0, Z), " &
 "101 (BC_2, TLN(1), output3, X, 99, 0, Z), " &
 "102 (BC_2, R_W, output3, X, 104, 0, Z), " &
 "103 (BC_2, SIZ(1), output3, X, 104, 0, Z), " &
 "104 (BC_2, *, control, 0), " & -- tln(0),siz[1:0]
 "105 (BC_2, SIZ(0), output3, X, 104, 0, Z), " &
 "106 (BC_2, TLN(0), output3, X, 104, 0, Z), " &
 "107 (BC_2, LOCKE, output3, X, 109, 0, Z), " &
 "108 (BC_2, LOCK, output3, X, 109, 0, Z), " &
 "109 (BC_2, *, control, 0), " & -- lock,locke
 "110 (BC_2, BR, output3, X, 127, 0, Z), " &
 "111 (BC_1, BB, input, X), " &
 "112 (BC_2, *, control, 0), " & -- bb
 "113 (BC_2, BB, output3, X, 112, 0, Z), " &
 "114 (BC_1, SNOOP, input, X), " &
 "115 (BC_2, *, control, 0), " & -- tip
 "116 (BC_2, TIP, output3, X, 115, 0, Z), " &
 "117 (BC_1, TS, input, X), " &
 "118 (BC_2, *, control, 0), " & -- ts
 "119 (BC_2, TS, output3, X, 118, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "120 (BC_1, BTT, input, X), " &
 "121 (BC_2, *, control, 0), " & -- btt
 "122 (BC_2, BTT, output3, X, 121, 0, Z), " &
 "123 (BC_2, *, control, 0), " & -- sas
 "124 (BC_2, SAS, output3, X, 123, 0, Z), " &
 "125 (BC_2, PST(4), output3, X, 127, 0, Z), " &
 "126 (BC_2, PST(3), output3, X, 127, 0, Z), " &
 "127 (BC_2, *, control, 0), " & -- pst[4:0],br
 "128 (BC_2, PST(2), output3, X, 127, 0, Z), " &
 "129 (BC_2, PST(1), output3, X, 127, 0, Z), " &
 "130 (BC_2, PST(0), output3, X, 127, 0, Z), " &
 "131 (BC_1, TA, input, X), " &
 "132 (BC_1, TEA, input, X), " &
 "133 (BC_1, TRA, input, X), " &
 "134 (BC_1, BG, input, X), " &
 "135 (BC_1, BGR, input, X), " &
 "136 (BC_1, TBI, input, X), " &
 "137 (BC_1, AVEC, input, X), " &
 "138 (BC_1, TCI, input, X), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-28 M68060 USER’S MANUAL MOTOROLA

Table 9-5. Command Summary
Command Command Operation

$00 No operation

$01

Restart the processor
This command restarts the processor after it had been halted by the execution of a HALT instruction
(opcode = $4AC8), or receipt of the $02 (Halt the processor) command.This command must be issued
only when the processor is halted.

$02

Halt the processor
This command forces the processor to gracefully halt. The processor samples for halts once per instruc-
tion and if this command is present, the processor halts execution. The halted state is reflected in the
PST encoding (PST = 11100).

$03

Enable the PULSE instruction to toggle non-pipelined mode
This command enables the PULSE instruction (opcode = $4acc) to toggle the processor between the
non-pipelined mode (allowing single-pipe dispatches) and normal pipeline mode. The PULSE instruction
must be followed by a NOP to ensure proper operation. Refer to command $07 for details of non-pipe-
lined mode, single-pipe dispatch operation. The $04 command negates the effect of this command. This
command must be issued only when the processor is halted.

$04

Reset all non-pipelined modes
This command forces the processor to normal pipeline operation and negates the effect of the $03, $06,
and $07 commands. The $04 command negates the effect of this command. This command must be is-
sued only when the processor is halted.

$05 Reserved

$06

Enable non-pipelined mode (allowing superscalar dispatches)
This command forces the processor into a non-pipelined mode of operation, while allowing superscalar
dispatches (if PCR0 = 1). After an instruction pair is dispatched into the primary and secondary OEPs,
execution of the subsequent instructions is delayed until the original instruction(s) complete execution
and the pipeline is synchronized. The synchronization requires the processor to be in a quiescent state
with all pending memory cycles complete. This implies all write buffers (push and store) are empty. The
$04 command negates the effect of this command. This command must be issued only when the pro-
cessor is halted.

$07

Enable non-pipelined mode (allowing single-pipe dispatches)
This command forces the processor into a non-pipelined mode of operation, while allowing instruction
dispatches into the primary OEP only. After an instruction has been dispatched into the primary OEP,
execution of the subsequent instructions is delayed until the original instruction complete execution and
the pipeline is synchronized. The synchronization requires the processor to be in a quiescent state with
all pending memory cycles complete. This implies all write buffers (push and store) are empty. The $04
command negates the effect of this command. This command must be issued only when the processor
is halted.

$08
Perform CINVA IC operation
This command causes a CINVAIC instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

$09
Perform CINVA DC operation
This command causes a CINVA DC instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

$0A
Perform CPUSHA IC,DC operation
This command causes a CPUSHA IC,DC instruction to be inserted into the primary OEP. This command
must be issued only when the processor is halted.

$0B
Perform CPUSHA DC operation
This command causes a CPUSHA DC instruction to be inserted into the primary OEP. This command
must be issued only when the processor is halted.

$0C
Perform PFLUSHA operation
This command causes a PFLUSHA instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-29

$0D

Force all the processor outputs to high-impedance state
This command causes the processor to three-state all output pins and ignore all input pins. This com-
mand does not apply to the debug command interface pins. This forces the processor into a state where
an emulator can generate system bus cycles by driving the appropriate pins. This command must be is-
sued only when the processor is halted.

$0E
Release all the processor outputs from high-impedance state
This command causes the processor to re-enable all output pins and begin sampling all the input pins.
This command must be issued only when the processor is halted.

$0F
Negate the effects of the Disable commands
This command causes the processor to disable the effects of the commands from $10 to $17.

$10
Disable instruction cache
This command forces the processor to run with the instruction cache disabled. The $0F command ne-
gates the effect of this command. This command must be issued only when the processor is halted.

$11
Disable data cache
This command forces the processor to run with the data cache disabled. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$12
Disable instruction ATC
This command forces the processor to run with the instruction ATC disabled. The $0F command negates
the effect of this command. This command must be issued only when the processor is halted.

$13
Disable data ATC
This command forces the processor to run with the data ATC disabled. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$14

Disable write buffer
This command forces the processor to run with the store buffers disabled. This command operation is
equivalent to that provided by the cache control register (CACR) bit 29. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$15
Disable branch cache
This command forces the processor to run with the branch cache disabled. The $0F command negates
the effect of this command. This command must be issued only when the processor is halted.

$16
Disable FPU
This command forces the FPU-disabled operation. The $0F command negates the effect of this com-
mand. This command must be issued only when the processor is halted.

$17
Disable secondary OEP
This command disables superscalar operation. The $0F command negates the effect of this command.
This command must be issued only when the processor is halted.

$18
trace -> normal trace; bkpt -> normal breakpoint
Both the trace and breakpoint exceptions operate normally. This command must be issued only when
the processor is halted.

$19

trace -> normal trace; bkpt -> bkpt with emulator mode entry
The trace exception operates normally. A breakpoint exception operates using vector offset $30, in ad-
dition, the processor enters the emulator mode. This command must be issued only when the processor
is halted.

$1A
trace -> normal trace with emulator mode entry; bkpt -> normal breakpoint
The breakpoint exception operates normally. A trace exception operates normally; in addition, the pro-
cessor enters the emulator mode. This command must be issued only when the processor is halted.

$1B

trace -> normal trace with emulator mode entry; bkpt -> bkpt with emulator mode entry
The trace exception operates normally. The breakpoint exception operates using vector offset $30. In
addition, when either of these exceptions are taken, the processor enters the emulator mode. This com-
mand must be issued only when the processor is halted.

$1C–$1F
Generate an emulator interrupt
Take an emulator interrupt exception.

Table 9-5. Command Summary (Continued)
Command Command Operation

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-9

If the first instruction of each pair is contained in the pOEP and the second in the sOEP, test
5 fails for both pairs. For the first example, the base resource required by the sOEP conflicts
with the execute result generated by the pOEP instruction. In the second example, the index
resource required by the sOEP conflicts with the execute result from the pOEP instruction.

10.1.6 Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources

This test validates that the register resources of the sOEP.IEE (A, B) do not conflict with the
execute result being generated by the instruction in the pOEP. Recall the most significant
bit of the resource name is asserted to indicate a register resource. Thus, this test can be
stated as:

test6 = 1 /* set test6 as okay
if (sOEP.A > 15) /* indicates a valid register
/* if the sOEP.A equals the pOEP’s Execute_result, a conflict exists

if ((sOEP.A = pOEP.Execute_result))
test6 = 0/* test6 has register conflict

if (sOEP.B > 15) /* indicates a valid register
/* if the sOEP.B equals the pOEP’s Execute_result, a conflict exists

if ((sOEP.B = pOEP.Execute_result))
test6 = 0/* test6 has register conflict

There are two very important exceptions to this rule involving the MOVE instruction:

1. If the primary OEP instruction is a simple “move long to register” (MOVE.L,Rx) and
the destination register Rx is required as either the sOEP.A or sOEP.B input, the
MC68060 bypasses the data as required and the test succeeds.

2. In the following sequence of instructions:

<op>.l,Dx
mov.l Dx,<mem>

the result of the pOEP instruction is needed as an input to the sOEP.IEE and the sOEP
instruction is a move instruction. The destination operand for the memory write is sourced
directly from the pOEP execute result and the test succeeds.

Consider the following examples:

asl.l &k,d0 Execute_result = d0
add.l d0,d1 A = d0
add.l <ea>,d1 Execute_result = d1
sub.l d0,d1 B = d1
mov.l <ea>,d0 Execute_result = d0
add.l d0,d1 A = d0

For all the examples, let the first instruction be loaded into the primary OEP and the second
loaded into the secondary OEP.

In the first and second examples, the result of the pOEP instruction is required as an input
to the sOEP.IEE. Since the pOEP instruction is not a simple MOVE operation, the test fails
in each case.

In the third example, the result of the pOEP operation is needed as an input to the
sOEP.IEE, but since the pOEP is executing the register-load MOVE instruction, the desti-

MOTOROLA

M68060 USER’S MANUAL

11-1

SECTION 11
APPLICATIONS INFORMATION

This section describes various applications topics relating to the MC68060.

11.1 GUIDELINES FOR PORTING SOFTWARE TO THE MC68060

The following paragraphs describe the issues involved in using the MC68060 in an existing
MC68040 system from a software perspective. Although this section focuses on the
MC68060, many of these items apply also to the MC68EC060 and MC68LC060.

11.1.1 User Code

The MC68060 is 100% user-mode compatible with the MC68040 when utilized with the
MC68060 software package (M68060SP) provided by Motorola. The M68060SP is available
free of charge.

Appendix C MC68060 Software Package

 discusses the procedure for port-
ing the M68060SP.

All user-mode instructions are handled in the M68060SP, except the “TRAPF #immediate”
instruction, in which the immediate value is a valid branch opcode. Use of this construct
results in a branch prediction error and an access error exception is taken. This exception
is indicated by the BPE bit in the fault status long word (FSLW). Although this error is recov-
erable in the access error handler by flushing the branch cache, performance is compro-
mised.

In addition, the CAS (misaligned operands) and CAS2 emulation may need special handling
in the access error handler. Furthermore, CAS and CAS2 emulation must not be interrupted
by level 7 interrupts to prevent data corruption. Refer to

Appendix C MC68060 Software
Package

 for additional information.

11.1.2 Supervisor Code

Unlike the MC68040, the MC68060 implements a single supervisor stack. System software
that requires the use of two supervisor stacks can still do so, but with some software over-
head.

The MC68060 aids in distinguishing between an interrupt exception and a non-interrupt
exception by implementing the M-bit in the status register (SR). The MC68060 does not
internally use the M-bit, but it is provided for system software. The MC68060 clears the M-
bit of the SR when an interrupt exception is taken. Otherwise, it is up to the system software
to set the M-bit and to examine it as needed. Also note, when the MC68060 takes an excep-
tion, a minimum of one instruction is always processed before a pending interrupt is taken.

MC68060 Software Package

C-4

M68060 USER’S MANUAL

MOTOROLA

Table C-1 shows the code size of each module.

C.2 UNIMPLEMENTED INTEGER INSTRUCTIONS

The MC68060 left some low-use integer instructions unimplemented to streamline internal
operations. This results in overall system performance improvement at the expense of soft-
ware emulation of the unimplemented integer instructions. The M68060SP provides user
object-code compatibility by providing the code needed to emulate these instructions via the
unimplemented integer instruction exception. The M68060SP also provides a software

Figure C-3. Module Call-In, Call-Out Example

Table C-1. Call-Out Dispatch Table and Module Size

Module Name
Call-Out Dispatch

Table Size
Entry-Point + Code

Section Size
Total Module

Size

Unimplemented Integer 128 bytes 8K-128 bytes 8K bytes
Unimplemented Integer Instruction Library 0 bytes 4K bytes 4K bytes
Full Floating-Point Kernel 128 bytes 56K-128 bytes 56K bytes
Floating-Point Library 0 bytes 34K bytes 34K bytes
Partial Floating-Point Kernel 128 bytes 35K-128 bytes 35K bytes

CALL-OUT DISPATCH TABLE

MODULE

L1: _call_out - _top

L2: _done - _top

CALL-OUT DISPATCH
TABLE MUST IMMEDIATELY
PRECEDE THE THE ENTRY-

POINT SECTION

ENTRY-POINT DISPATCH SECTION

bra f1

CODE SECTION

f1: Actual func code

*Do a call-out
lea _top,A0
add.1 L1,A0
jsr (a0)
next instruction

lea _top,A0
add.1 L2,A0
jmp (a0)

_call_out: call_out code here

rts

OPERATING SYSTEM-SUPPLIED CODE

CALLING ROUTINE

bra _top+func_offset
next instruction

_top+func_offset

MODULE FUNCTIONS
ARE FIXED OFFSETS

FROM THE LABEL _top

_top

_done:

THE ENTRY-POINT AND CODE
SECTIONS ARE INTHE

PSEUDO-ASSEMBLY FILE

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-11

CPUSH

Push and Possibly Invalidate Cache Line

CPUSH

(MC68060, MC68LC060, MC68EC060)

Operation:

If Supervisor State, Then
If Data Cache, Then

 Push Selected Dirty Data Cache Lines
If DPI bit of CACR = 0, Then

Invalidate Selected Cache Lines
Endif

Endif
If Instruction Cache, Then

Invalidate Selected Cache lines
Endif

Endif
Else TRAP

Assembler
Syntax:

CPUSHL<caches>,(An)
CPUSHP<caches>,(An)
CPUSHA<caches>

Where <caches> specifies the instruction cache, data
cache, both caches, or neither cache.

Attributes:

Unsized

Description:

Pushes and possibly invalidates selected cache lines. The data cache,
instruction cache, both caches, or neither cache can be specified. When the data
cache is specified, the selected data cache lines are first pushed to memory (if they
contain dirty data) and then invalidated if the DPI bit of the CACR is cleared. Otherwise,
the selected data cache lines remain valid. Selected instruction cache lines are invali-
dated. The CACR is accessed via the MOVEC instruction.

Specific cache lines can be selected in three ways:

1. CPUSHL pushes and possibly invalidates the cache line (if any) matching the
physical address in the specified address register.

2. CPUSHP pushes and possibly invalidates the cache lines (if any) matching the
physical memory page in the specified address register. For example, if 4K-byte
page sizes are selected and An contains $12345000, all cache lines matching
page $12345000 are selected.

3. CPUSHA pushes and possibly invalidates all cache entries.

