
Freescale Semiconductor - MC68LC060RC50 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 50MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68lc060rc50

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68lc060rc50-4468478
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Signal Description

MOTOROLA M68060 USER’S MANUAL 2-15

2.10.2 MC68060 Processor Clock (CLK)
CLK is the synchronous clock of the MC68060. This signal is used internally to clock or
sequence the internal logic of the MC68060 processor and is qualified with CLKEN to clock
all external bus signals.

Since the MC68060 is designed for static operation, CLK can be gated off to lower power
dissipation (e.g., during low-power stopped states). Refer to Section 7 Bus Operation for
more information on low-power stopped states.

2.10.3 Clock Enable (CLKEN)
This input signal is a qualifier for the MC68060 processor clock (CLK) and is provided to sup-
port lower bus frequency MC68060 designs. The internal MC68060 bus interface controller
will sample, assert, negate, or three-state signals (except for BB and TIP which can three-

Table 2-7. PSTx Encoding
Hex PST4 PST3 PST2 PST1 PST0 Internal Processor Status
$00 0 0 0 0 0 Continue Execution in User Mode
$01 0 0 0 0 1 Complete 1 Instruction in User Mode
$02 0 0 0 1 0 Complete 2 Instructions in User Mode
$03 0 0 0 1 1 —
$04 0 0 1 0 0 —
$05 0 0 1 0 1 —
$06 0 0 1 1 0 —
$07 0 0 1 1 1 —
$08 0 1 0 0 0 Emulator Mode Entry Exception Processing
$09 0 1 0 0 1 Complete Not Taken Branch in User Mode
$0A 0 1 0 1 0 Complete Not Taken Branch Plus 1 Instruction in User Mode
$0B 0 1 0 1 1 IED Cycle of Branch to Vector, Emulator Entry Exception
$0C 0 1 1 0 0 —
$0D 0 1 1 0 1 Complete Taken Branch in User Mode
$0E 0 1 1 1 0 Complete Taken Branch Plus 1 Instruction in User Mode
$0F 0 1 1 1 1 Complete Taken Branch Plus 2 Instructions in User Mode
$10 1 0 0 0 0 Continue Execution in Supervisor Mode
$11 1 0 0 0 1 Complete 1 Instruction in Supervisor Mode
$12 1 0 0 1 0 Complete 2 Instructions in Supervisor Mode
$13 1 0 0 1 1 —
$14 1 0 1 0 0 —
$15 1 0 1 0 1 Complete RTE Instruction in Supervisor Mode
$16 1 0 1 1 0 Low-Power Stopped State; Waiting for an Interrupt or Reset
$17 1 0 1 1 1 MC68060 Is Stopped Waiting for an Interrupt
$18 1 1 0 0 0 MC68060 Is Processing an Exception
$19 1 1 0 0 1 Complete Not Taken Branch in Supervisor Mode
$1A 1 1 0 1 0 Complete Not Taken Branch Plus 1 Instruction in Supervisor Mode
$1B 1 1 0 1 1 IED Cycle of Branch to Vector, Exception Processing
$1C 1 1 1 0 0 MC68060 Is Halted
$1D 1 1 1 0 1 Complete Taken Branch in Supervisor Mode
$1E 1 1 1 1 0 Complete Taken Branch Plus 1 Instruction in Supervisor Mode
$1F 1 1 1 1 1 Complete Taken Branch Plus 2 Instructions in Supervisor Mode

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-5

FITC—1/2-Cache Mode (Instruction ATC)
0 = The instruction ATC operates with 64 entries.
1 = The instruction ATC operates with 32 entries.

DCO—Default Cache Mode (Data Cache)
00 = Writethrough, cachable
01 = Copyback, cachable
10 = Cache-inhibited, precise exception model
11 = Cache-inhibited, imprecise exception model

DUO—Default UPA bits (Data Cache)
These bits are two user-defined bits for operand accesses (see

4.2.2.3 Descriptor Field
Definitions

).

DWO—Default Write Protect (Data Cache)
0 = Reads and writes are allowed.
1 = Reads are allowed, writes cause a protection exception.

DCI—Default Cache Mode (Instruction Cache)
00 = Writethrough, cachable
01 = Copyback, cachable
10 = Cache-inhibited, precise exception model
11 = Cache-inhibited, imprecise exception model

DUI—Default UPA Bits (Instruction Cache)
These bits are two user-defined bits for instruction prefetch bus cycles (see

4.2.2.3
Descriptor Field Definitions

)

Bit 0—Reserved by Motorola. Always read as zero.

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-13

4.2.2.3 DESCRIPTOR FIELD DEFINITIONS.

The field definitions for the table- and page-
level descriptors are listed in alphabetical order:

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Cache-Inhibited, Precise exception model
11 = Cache-Inhibited, Imprecise exception model

Section 5 Caches

provides detailed information on caching modes.

Descriptor Address
This 30-bit field, which contains the physical address of a page descriptor, is only used in
indirect descriptors.

G—Global
When this bit is set, it indicates the entry is global which gives the user the option of group-
ing entries as global or nonglobal for use when PFLUSHing the ATC, and has no other
meaning. PFLUSH instruction variants that specify nonglobal entries do not invalidate glo-
bal entries, even when all other selection criteria are satisfied. If these PFLUSH variants
are not used, then system software can use this bit.

M—Modified
This bit identifies a page which has been written to by the processor. The MC68060 sets
the M-bit in the corresponding page descriptor before a write operation to a page for which
the M-bit is clear, except for write-protect or supervisor violations in which case the M-bit
is not set. The read portion of a locked read-modify-write access is considered a write for
updating purposes. The MC68060 never clears this bit.

PDT—Page Descriptor Type
This field identifies the descriptor as an invalid descriptor, a page descriptor for a resident
page, or an indirect pointer to another page descriptor.

00 = Invalid
This code indicates that the descriptor is invalid. An invalid descriptor can repre-
sent a nonresident page or a logical address range that is out of bounds. All other
bits in the descriptor are ignored. When an invalid descriptor is encountered, an
ATC entry is not created.

01 or 11 = Resident
These codes indicate that the page is resident.

10 = Indirect
This code indicates that the descriptor is an indirect descriptor. Bits 31–2 contain
the physical address of the page descriptor. This encoding is invalid for a page
descriptor pointed to by an indirect descriptor (that is, only one level of indirection
is allowed).

Memory Management Unit

4-20

M68060 USER’S MANUAL

MOTOROLA

updated before the MC68060 allows a page to be accessed. Table 4-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and read
or write access type.

An alternate address space access is a special case that is immediately used as a physical
address without translation. Because the MC68060 implements a merged instruction and
data space, instruction address spaces (SFC/DFC = $6 or $2) using the MOVES instruction
are converted into data references (SFC/DFC = $5 or $1). The data memory unit handles
these translated accesses as normal data accesses. If the access fails due to an ATC fault
or a physical bus error, the resulting access error stack frame contains the converted func-
tion code in the TM field for the faulted access. If the MOVES instruction is used to write
instruction address space, then to maintain cache coherency, the corresponding addresses
must be invalidated in the instruction cache. The SFC and DFC values and results for nor-
mal (TT = 0) and for MOVES (TT = 10) accesses are listed in Table 4-2.

4.2.6 Address Translation Protection

The MC68060 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each table
and page descriptor includes a write-protect (W) bit that can be set to provide write protec-

Table 4-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status
WP Bit

Access
Type

Page Descriptor
 Update Operation

New Status
U-Bit M-Bit U-Bit M-Bit

0 0

X Read

Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 0 None 1 0
1 1 None 1 1
0 0

0

Write

Write to Set U and M 1 1
0 1 Write to Set U 1 1
1 0 Write to Set M 1 1
1 1 None 1 1
0 0

1

None 0 0
0 1 None 0 1
1 0 None 1 0
1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

Table 4-2. SFC and DFC Values

SFC/DFC Value
Results

TT TM

000 10 000
001 00 001
010 00 001
011 10 011
100 10 100
101 00 101
110 00 101
111 10 111

Caches

MOTOROLA

M68060 USER’S MANUAL

5-3

have the V-bit and D-bit set, indicating that the line has valid entries that have not been writ-
ten to memory. A cache line changes states from valid or dirty to invalid if the execution of
the CINV or CPUSH instruction explicitly invalidates the cache line or if a snooped access
hits the cache line. Both caches should be explicitly cleared using the CINVA instruction
after a hardware reset of the processor since reset does not invalidate the cache lines.

Figure 5-4 illustrates the general flow of a caching operation. The caches use the physical
addresses, and to simplify the discussion, the discussion of the translation of logical to phys-
ical addresses is omitted.

 To determine if the physical address is already allocated in the cache, the lower physical
address bits 10–4 are used to index into the cache and select 1 of 128 sets of cache lines.
Physical address bits 31–11 are used as a tag reference or to update the cache line tag

Figure 5-4. Caching Operation

TAG DATA/TAG REFERENCE INDEX

31 10

0COMPARATOR

1

3

2
HIT 3

HIT 2

HIT 1

HIT 0

HIT

TAG STATUS

TAG STATUS

SET 0

SET 1

SET 128

LINE 0

LINE 1

LINE 2

LINE 3

LW0 LW1 LW2 LW3

LW0 LW1 LW2 LW3

MUX

LOGICAL OR

LINE SELECT

DATA OR
INSTRUCTION

PHYSICAL
SET SELECT

PA10–PA4

PHYSICAL ADDRESS

TRANSLATED
PHYSICAL
ADDRESS
PA31–PA11

411 3 0

PA31-PA11

Caches

5-19

M68060 USER’S MANUAL

MOTOROLA

Table 5-3. Data Cache Line State Transitions

Cache
Operation

Current State
Invalid Cases Valid Cases Dirty Cases

OPU Read
Miss (C,W)I1

Read line from memory
and update cache; Sup-
ply data to OPU; Go to
valid state.

(C,W)V1
Read new line from mem-
ory and update cache;
supply data to OPU; Re-
main in current state.

CD1

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Supply data
to OPU; Write push buffer
contents to memory; Go
to valid state.

OPU Read
Hit (C,W)I2 Not possible. (C,W)V2 Supply data to OPU; Re-

main in current state. CD2 Supply data to OPU; Re-
main in current state.

OPU Write
Miss

(Copyback
Mode)

CI3
Read line from memory
and update cache; Write
data to cache; Go to dirty
state.

CV3
Read new line from mem-
ory and update cache;
Write data to cache; Go
to dirty state.

CD3

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Write push
buffer contents to memo-
ry; Remain in current
state.

OPU Write
Miss

(Writethrou
gh Mode)

WI3 Write data to memory;
Remain in current state. WV3 Write data to memory;

Remain in current state.
WD
3

Write data to memory;
Remain in current state.

OPU Write
Hit (Copy-

back Mode)
CI4 Not possible. CV$ Write data to cache; Go

to dirty state. CD4 Write data to cache; Re-
main in current state.

OPU Write
Hit

(Writethrou
gh Mode)

WI4 Not possible. WV4
Write data to memory
and to cache; Remain in
current state.

WD
4

Push dirty cache line to
memory; Write data to
memory and to cache;
Go to valid state.

Cache In-
validate (C,W)I5 No action; Remain in cur-

rent state. (C,W)V5 No action; Go to invalid
state. CD5 No action (dirty data lost);

Go to invalid state.

Cache
Push (C,W)I6 No action; Remain in cur-

rent state. (C,W)V6 No action; Go to invalid
state. CD6

Push dirty cache line to
memory; Go to invalid
state or remain in current
state, depending on the
DPI bit the the CACR.

Alternate
Master

Snoop Hit
(C,W)I7 Not possible. (C,W)V7 No action; Go to invalid

state. CD7 No action (dirty data lost);
Go to invalid state.

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-5

6.1.3.1 FLOATING-POINT CONDITION CODE BYTE.

The FPCC byte (see Figure 6-4)
contains four condition code bits that are set at the end of all arithmetic instructions involving
the floating-point data registers. These bits are sign of mantissa (N), zero (Z), infinity (I), and
NAN. The FMOVE FPm,

<

ea

>

, FMOVEM FPm, and FMOVE FPCR instructions do not affect
the FPCC.

To aid programmers of floating-point subroutine libraries, the MC68060 implements the four
FPCC bits in hardware instead of only implementing the four IEEE conditions. An instruction
derives the IEEE conditions when needed. For example, the programmers of a complex
arithmetic multiply subroutine usually prefer to handle special data types, such as zeros,
infinities, or NANs, separately from normal data types. The floating-point condition codes
allow users to efficiently detect and handle these special values.

6.1.3.2 QUOTIENT BYTE.

The quotient byte (see Figure 6-5) provides compatibility with
the MC68881/MC68882. This byte is set at the completion of the modulo (FMOD) or IEEE
remainder (FREM) instruction, and contains the seven least significant bits of the unsigned
quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions.
For example, seven bits are more than enough to determine the quadrant of a circle in which
an operand resides. The quotient field (bits 22–16) remains set until the user clears it.

6.1.3.3 EXCEPTION STATUS BYTE.

The EXC byte (see Figure 6-6) contains a bit for each
floating-point exception that can occur during the most recent arithmetic instruction or move
operation. The start of most operations clears this byte; however, operations that cannot
generate floating-point exceptions (the FMOVEM and FMOVE control register instructions)
do not clear this byte. An exception handler can use this byte to determine which floating-
point exception(s) caused a trap.

Figure 6-4. Floating-Point Condition Code (FPSR)

Figure 6-5. Floating-Point Quotient Byte (FPSR)

N Z I NAN

31 30 29 28 27 26 25 24

NOT-A-NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

0

23 22 21 20 19 18 17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

S QUOTIENT

SIGN OF QUOTIENT

Bus Operation

7-16

M68060 USER’S MANUAL

MOTOROLA

cycles, the bus controller still treats the four transfers as a single line bus cycle and does not
allow other unrelated processor accesses or bus arbitration to intervene between the trans-
fers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does not
affect completion of the line transfer, but the bus controller registers and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst bus
cycle and during the three long-word bus cycles of a burst-inhibited line transfer.

The address placed on the address bus by the processor for line bus cycle does not neces-
sarily point to the most significant byte of each long word because A1 and A0 are copied
from the original operand address supplied to the memory unit by the integer unit for line
reads. These two bits are also unchanged for the three long-word bus cycles of a burst-
inhibited line transfer. The selected device should ignore A1 and A0 for long-word and line
read transfers.

The address of an instruction fetch will always be aligned to a long-word boundary
($xxxxxxx0, $xxxxxxx4, $xxxxxxx8, or $xxxxxxxC). This is unlike the MC68040 in which the
prefetches occur on half-line boundaries. Therefore, compilers should attempt to locate
branch targets on long-word boundaries to minimize branch stalls. For example, if the target
of a branch is an instruction that starts at $1000000E, the following burst sequence will occur
upon a cache miss: $1000000C, $10000000, $10000004, then $10000008. Figure 7-14 and
Figure 7-15 illustrate a flowchart and functional timing diagram for a line read bus transfer.

Clock 1 (C1)
The line read cycle starts in C1. During C1, the processor places valid values on the ad-
dress bus and transfer attributes. For user and supervisor mode accesses that are trans-
lated by the corresponding memory unit, the UPAx signals are driven with the values from
the matching U1 and U0 bits. The TTx and TMx signals identify the specific access type.
The R/W signal is driven high for a read cycle, and the size signals (SIZx) indicate line
size. CIOUT is asserted for a MOVE16 operand read if the access is identified as non-
cachable. Refer to

Section 4 Memory Management Unit

 for information on the
MC68060 and MC68LC060 memory units and

Appendix B MC68EC060

 for information
on the MC68EC060 memory unit.
The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not already
asserted from a previous bus cycle, TIP is also asserted at this time to indicate that a bus
cycle is active.

Clock 2 (C2)
During C2, the processor negates TS. The selected device uses R/W and SIZx to place
the data on the data bus. (The first transfer must supply the long word at the correspond-
ing long-word boundary.) Concurrently, the selected device asserts TA and either negates
TBI to indicate it can or asserts TBI to indicate it cannot support a burst transfer.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins sam-
pling termination signals such as TA after a user-programmed number of BCLK rising

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-17

edges has expired. The signal SAS is provided as a status output to indicate which BCLK
rising edge the processor begins to sample the termination signals. If this mode is dis-

Figure 7-14. Line Read Cycle Flowchart

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE UP A1–UPA0, TT1–TT0, TM2–TM0,
 CIOUT, TLN1–TLN0, LOCK, LOCKE, BS3–BS0
4) DRIVE SIZ1–SIZ0 TO LINE
5) ASSERT TS FOR ONE BCLK
6) ASSERT TIP
7) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED

1) REGISTER DATA
2) SAMPLE TBI AND TCI
3) INCREMENT A3–A2 IF CLA ASSERTED

 1) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION
 IGNORE STATE CAPABILITY
 DISABLED. ELSE, ASSERT SAS
 AFTER READ SECONDARY
 IGNORE STATE COUNTER HAS
 EXPIRED. 1) DECODE ADDRESS

2) PLACE DATA ON D31–D0
3) ASSERT TA FOR ONE BCLK
4) ASSERT CLA TO INCREMENT A3–A2

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT TA FOR ONE BCLK
4) ASSERT CLA TO INCREMENT A3–A2
5) ASSERT TBI OR TCI AS NEEDED

PROCESSOR SYSTEM

TBI ASSERTED TBI NEGATED

1) REGISTER DATA
2) INCREMENT A3–A2 IF CLA
 ASSERTED

4 LW DONE 4 LW NOT DONE

1) NEGATE LOCK, LOCKE IF
 NECESSARY

1) NEGATE TIP OR START NEXT
 CYCLE

1) THREE-STATE D31–D0

CONTINUE WITH FIG. 7-16

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-35

7.8.1.1 INTERRUPT ACKNOWLEDGE CYCLE (TERMINATED NORMALLY). When the
MC68060 processes an interrupt exception, it performs an interrupt acknowledge bus cycle
to obtain the vector number that contains the starting location of the interrupt exception han-
dler. Some interrupting devices have programmable vector registers that contain the inter-
rupt vectors for the exception handlers they use. Other interrupting conditions or devices
cannot supply a vector number and use the autovector bus cycle described in 7.8.1.2
Autovector Interrupt Acknowledge Cycle.

The interrupt acknowledge bus cycle is a read transfer. It differs from a normal read cycle in
the following respects:

• TT1 and TT0 = $3 to indicate an acknowledged bus cycle

• Address signals A31–A0 are set to all ones ($FFFFFFFF)

• TM2–TM0 are set to the interrupt request level (the inverted values of IPLx).

The responding device places the vector number on the lower byte of the data bus during
the interrupt acknowledge bus cycle, and the cycle is terminated normally with TA. Figure 7-
27 and Figure 7-28 illustrate a flowchart and functional timing diagram for an interrupt
acknowledge cycle terminated with TA.

Note that the acknowledge termination ignore state capability is applicable to the interrupt
acknowledge cycle. If enabled, TA and other acknowledge termination signals are ignored
for a user-programmed number of BCLK cycles.

7.8.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting TA, the
device asserts the autovector (AVEC) signal with TA to terminate the cycle. AVEC is only
sampled with TA asserted. AVEC can be grounded if all interrupt requests are autovectored.

The vector number supplied in an autovector operation is derived from the interrupt priority
level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt
acknowledge bus cycle, the MC68060 ignores the state of the data bus and internally gen-
erates the vector number, which is the sum of the interrupt priority level plus 24 ($18). There
are seven distinct autovectors that can be used, corresponding to the seven levels of inter-
rupts available with IPLx signals. Figure 7-29 illustrates a functional timing diagram for an
autovector operation.

Note that the acknowledge termination ignore state capability is applicable to the interrupt
acknowledge cycle. If enabled, AVEC and other acknowledge termination signals are
ignored for a user-programmed number of BCLK cycles.

7.8.1.3 SPURIOUS INTERRUPT ACKNOWLEDGE CYCLE. When a device does not
respond to an interrupt acknowledge bus cycle, spurious with TA, or AVEC and TA, the
external logic typically returns the transfer error acknowledge signal (TEA). In this case, the
MC68060 automatically generates the spurious interrupt vector number 24 ($18) instead of
the interrupt vector number. If operating in the MC68040 acknowledge termination mode,

Exception Processing

8-20

M68060 USER’S MANUAL

MOTOROLA

8.4.2 Six-Word Stack Frame (Format $2)

If a six-word stack frame is on the stack and an RTE instruction is encountered, the proces-
sor restores the SR and PC values from the stack, increments the SSP by $C, and resumes
normal instruction execution.

8.4.3 Floating-Point Post-Instruction Stack Frame (Format $3)

In this case, the processor restores the SR and PC values from the stack and increments
the supervisor stack pointer by $C. If another floating-point post-instruction exception is
pending, exception processing begins immediately for the new exception; otherwise, the
processor resumes normal instruction execution.

Stack Frames Exception Types
Stacked PC Points To;

Address Field Has

• CHK, CHK2 (Emulated),
TRAPcc, FTRAPcc(Emulat-
ed), TRAPV, Trace, or Zero Di-
vide

• Unimplemented Floating-
Point Instruction

• Address Error

• Next Instruction; Address field
has the address of the instruc-
tion that caused the excep-
tion.

• Next Instruction; Address field
has the calculated <ea> for
the floating-point instruction.

• Instruction that caused the ad-
dress error; Address field has
the branch target address with
A0=0.

Stack Frames Exception Types
Stacked PC Points To;
Effective Address Field

• Floating-Point Post-Instruction • Next Instruction; Effective
Address field is the calculated
effective address for the float-
ing-point instruction.

STATUS REGISTER

PROGRAM COUNTER

0 0 1 0 VECTOR OFFSET

015
SP

+$02

+$06

SIX-WORD STACK FRAME–FORMAT $2

ADDRESS
+$08

STATUS REGISTER

PROGRAM COUNTER

0 0 1 1 VECTOR OFFSET

015
SP

+$02

+$06

FLOATING-POINT POST-INSTRUCTION
STACK FRAME–FORMAT $3

EFFECTIVE ADDRESS
+$08

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-6

M68060 USER’S MANUAL

MOTOROLA

through at least five rising edges and the falling edge after the fifth rising edge. A JTAG reset
will cause the TAP state machine to enter the test-logic-reset state (normal operation of the
TAP state machine into the test-logic-reset state will also result in placing the default value
of $5 into the instruction register). The shift register portion of the instruction register is
loaded with the default value of $5 when in the Capture-IR state and a rising edge of TCK
occurs.

9.1.2.6 CLAMP.

The CLAMP instruction selects the bypass register while simultaneously
forcing all output pins and bidirectional pins configured as outputs, to the fixed values that
are preloaded and held in the boundary scan update registers. This instruction enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while con-
ducting an EXTEST type of instruction through the boundary scan register. The CLAMP
instruction becomes active on the falling edge of TCK in the update-IR state when the data
held in the instruction shift register is equivalent to $6.

It is recommended that the boundary scan register bit equivalent to the RSTI pin be pre-
loaded with the assert value for system reset prior to application of the CLAMP instruction.
This will ensure that CLAMP asserts the internal reset for the MC68060 system logic to force
a predictable benign internal state while isolating all pins from signals generated external to
the part. However, if it is desired to hold the processor in the LPSTOP state when applying
the CLAMP instruction, do not preload the boundary scan register bit equivalent to the RSTI
pin with an assert value because this action forces the processor out of the LPSTOP state.

9.1.2.7 HIGHZ.

The HIGHZ instruction is an IEEE 1149.1 option that is provided as a Motor-
ola public instruction designed to anticipate the need to backdrive the output pins and pro-
tect the input pins from random toggling during circuit board testing. The HIGHZ instruction
selects the bypass register, forces all output and bidirectional pins to the high-impedance
state, and isolates all input signal pins except for CLK, IPL, and RSTI. The HIGHZ instruction
becomes active on the falling edge of TCK in the update-IR state when the data held in the
instruction shift register is equivalent to $7.

It is recommended that the boundary scan register bit equivalent to the RSTI pin be pre-
loaded with the assert value for system reset prior to application of the HIGHZ instruction.
This will ensure that HIGHZ asserts the internal reset for the MC68060 system logic to force
a predictable benign internal state while isolating all pins from signals generated external to
the part.

9.1.2.8 BYPASS.

The BYPASS instruction selects the single-bit bypass register, creating a
single bit shift register path from the TDI pin to the bypass register to the TDO pin. This
instruction enhances test efficiency by reducing the overall shift path when a device other
than the MC68060 becomes the device under test on a board design with multiple chips on
the overall IEEE-1149.1-defined boundary scan chain. The bypass register has been imple-
mented in accordance with IEEE 1149.1 so that the shift register stage is set to logic zero
on the rising edge of TCK following entry into the capture-DR state. Therefore, the first bit
to be shifted out after selecting the bypass register is always a logic zero (this is to differen-
tiate a part that supports an idcode register from a part that supports only the bypass regis-
ter).

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-10

M68060 USER’S MANUAL

MOTOROLA

Figure 9-7. General Arrangement of Bidirectional Pin Cells

Table 9-3. Boundary Scan Bit Definitions

Bit Cell Type Pin/Cell Name Pin Type

0 O.Pin A31 I/O
1 I.Pin A31 I/O
2 O.Pin A30 I/O
3 I.Pin A30 I/O
4 IO.Ctl A31–A28 ena —
5 O.Pin A29 I/O
6 I.Pin A29 I/O
7 O.Pin A28 I/O
8 I.Pin A28 I/O
9 O.Pin A27 I/O
10 I.Pin A27 I/O
11 O.Pin A26 I/O
12 I.Pin A26 I/O
13 IO.Ctl A27–A24 ena —
14 O.Pin A25 I/O
15 I.Pin A25 I/O
16 O.Pin A24 I/O
17 I.Pin A24 I/O
18 O.Pin A23 I/O
19 I.Pin A23 I/O
20 O.Pin A22 I/O
21 I.Pin A22 I/O
22 IO.Ctl A23–A20 ena —
23 O.Pin A21 I/O
24 I.Pin A21 I/O
25 O.Pin A20 I/O
26 I.Pin A20 I/O
27 O.Pin A19 I/O
28 I.Pin A19 I/O
29 O.Pin A18 I/O
30 I.Pin A18 I/O
31 IO.Ctl A19–A16 ena —

FROM
LAST CELL

OUTPUT
DATA

INPUT
DATA

OUTPUT
ENABLE

TO NEXT CELL

TO NEXT
PIN PAIR

I/O.CTL

O.PIN

I.PIN

EN I/O
 PIN

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-20

M68060 USER’S MANUAL

MOTOROLA

 attribute INSTRUCTION_CAPTURE of MC68060: entity is "0101";
 attribute INSTRUCTION_PRIVATE of MC68060:entity is "PRIVATE";
 attribute REGISTER_ACCESS of MC68060:entity is
 "BOUNDARY (LPSAMPLE)";

 attribute IDCODE_REGISTER of MC68060: entity is
 "0001" & -- version
 "000001" & -- design center
 "0000110000" & -- sequence number
 "00000001110" & -- Motorola
 "1"; -- required by 1149.1

 attribute BOUNDARY_CELLS of MC68060:entity is
 "BC_1, BC_2, BC_4";

 attribute BOUNDARY_LENGTH of MC68060:entity is 214;

 attribute BOUNDARY_REGISTER of MC68060:entity is
 --num cell port function safe ccell dsval rslt
 "0 (BC_1, D(0), input, X), " &
 "1 (BC_2, D(0), output3, X, 4, 0, Z), " &
 "2 (BC_1, D(1), input, X), " &
 "3 (BC_2, D(1), output3, X, 4, 0, Z), " &
 "4 (BC_2, *, control, 0), " & -- d[3:0]
 "5 (BC_1, D(2), input, X), " &
 "6 (BC_2, D(2), output3, X, 4, 0, Z), " &
 "7 (BC_1, D(3), input, X), " &
 "8 (BC_2, D(3), output3, X, 4, 0, Z), " &
 "9 (BC_1, D(4), input, X), " &
 "10 (BC_2, D(4), output3, X, 13, 0, Z), " &
 "11 (BC_1, D(5), input, X), " &
 "12 (BC_2, D(5), output3, X, 13, 0, Z), " &
 "13 (BC_2, *, control, 0), " & -- d[7:4]
 "14 (BC_1, D(6), input, X), " &
 "15 (BC_2, D(6), output3, X, 13, 0, Z), " &
 "16 (BC_1, D(7), input, X), " &
 "17 (BC_2, D(7), output3, X, 13, 0, Z), " &
 "18 (BC_1, D(8), input, X), " &
 "19 (BC_2, D(8), output3, X, 22, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "20 (BC_1, D(9), input, X), " &
 "21 (BC_2, D(9), output3, X, 22, 0, Z), " &
 "22 (BC_2, *, control, 0), " & -- d[11:8]
 "23 (BC_1, D(10), input, X), " &
 "24 (BC_2, D(10), output3, X, 22, 0, Z), " &
 "25 (BC_1, D(11), input, X), " &
 "26 (BC_2, D(11), output3, X, 22, 0, Z), " &
 "27 (BC_1, D(12), input, X), " &
 "28 (BC_2, D(12), output3, X, 31, 0, Z), " &
 "29 (BC_1, D(13), input, X), " &
 "30 (BC_2, D(13), output3, X, 31, 0, Z), " &
 "31 (BC_2, *, control, 0), " & -- d[15:12]
 "32 (BC_1, D(14), input, X), " &
 "33 (BC_2, D(14), output3, X, 31, 0, Z), " &

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-7

The MC68060 superscalar architecture allows pairs of single-cycle standard operations to
be simultaneously dispatched in the operand execution pipelines. Additionally, the design
also permits a single-cycle standard instruction plus a conditional branch (Bcc) predicted
by the branch cache to be dispatched in the OEP. Bcc instructions predicted as not taken
allow another instruction to be executed in the sOEP. This also is true for forward Bcc
instructions that are not predicted.

1

These floating-point instructions are pOEP-but-allows-sOEP except for the following:
F<op>Dm,FPn
F<op>&imm,FPn
F<op>.x<mem>,FPn

which are classified as pOEP-only

Table 10-3. Superscalar Classification of M680x0 Privileged Instructions

Mnemonic Instruction Superscalar Classification

ANDI to SR AND Immediate to Status Register pOEP-only
CINV Invalidate Cache Lines pOEP-only
CPUSH Push and Invalidate Cache Lines pOEP-only
EORI to SR Exclusive OR Immediate to Status Register pOEP-only
MOVE from SR Move from Status Register pOEP-only
MOVE to SR Move to Status Register pOEP-only
MOVE USP Move User Stack Pointer pOEP-only
MOVEC Move Control Register pOEP-only
MOVES Move Address Space pOEP-only
ORI to SR Inclusive OR Immediate to Status Register pOEP-only
PFLUSH Flush ATC Entries pOEP-only
PLPA Load Physical Address pOEP-only
RESET Reset External Devices pOEP-only
RTE Return from Exception pOEP-only
STOP Load Status Register and Stop pOEP-only

Table 10-4. Superscalar Classification of M680x0 Floating-Point Instructions

Mnemonic Instruction Superscalar Classification

FABS, FDABS, FSABS Absolute Value pOEP-but-allows-sOEP

1

FADD, FDADD, FSADD Add pOEP-but-allows-sOEP

1

FBcc Branch Conditionally pOEP-only

FCMP Compare pOEP-but-allows-sOEP

1

FDIV, FDDIV, FSDIV,
FSGLDIV Divide pOEP-but-allows-sOEP

1

FINT, FINTRZ Integer Part, Round-to-Zero pOEP-but-allows-sOEP

1

FMOVE, FDMOVE, FSMOVE Move Floating-Point Data Register pOEP-but-allows-sOEP

1

FMOVE Move System Control Register pOEP-only
FMOVEM Move Multiple Data Registers pOEP-only
FMUL, FDMUL, FSMUL,
FSGLMUL Multiply pOEP-but-allows-sOEP

1

FNEG, FDNEG, FSNEG Negate pOEP-but-allows-sOEP

1

FNOP No Operation pOEP-only

FSQRT Square Root pOEP-but-allows-sOEP

1

FSUB, FDSUB, FSSUB Subtract pOEP-but-allows-sOEP

1

FTST Test Operand pOEP-but-allows-sOEP

1

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-23

1 For these instructions, add the effective address calculation time.

1 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

Table 10-22. Status Register (SR) Instruction Execution Times
Instruction Execution Time
ANDI to SR 12(0/0)
EORI to SR 12(0/0)

MOVE from SR 1(0/1)1

MOVE to SR 12(1/0)1

ORI to SR 5(0/0)

Table 10-23. MOVES Execution Times

MOVES Function
Destination

Size (An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF)1 (xxx).WL
Source<SFC> -> Rn Byte, Word 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0)

“ Long 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0)
Rn -> Dest <DFC> Byte, Word 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 3(0/1) 2(0/1)

“ Long 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 3(0/1) 2(0/1)

Table 10-24. Miscellaneous Instruction Execution Times
Instruction Size Register Memory Reg -> Dest Source -> Reg

ANDI to CCR Byte 1(0/0) — — —

CHK Word 2(0/0) 2(1/0) 1 — —

“ Long 2(0/0) 2(1/0) 1 — —

CINVA — — <=17(0/0) — —
CINVL — — <=18(0/0) — —
CINVP — — <=274(0/0) — —

CPUSHA — — <=5394(0/512)2 — —

CPUSHL — — <=26(0/1)2 — —

CPUSHP — — <=2838(0/256)2 — —

EORI to CCR Byte 1(0/0) — — —
EXG Long 1(0/0) — — —
EXT Word 1(0/0) — — —
“ Long 1(0/0) — — —
EXTB Long 1(0/0) — — —
LINK Word 2(0/1) — — —
“ Long 2(0/1) — — —
LPSTOP Word 15(0/1) — — —

MOVE from CCR Word 1(0/0) 1(0/1)1 — —

MOVE to CCR Word 1(0/0) 1(1/0)1 — —

MOVE from USP Long 1(0/0) — — —
MOVE to USP Long 2(0/0) — — —
MOVEC (SFC,DFC,
USP,VBR,PCR) Long — — 12(0/0) 11(0/0)

MOVEC (CACR,TC,
TTR,BUSCR,URP,SRP) Long — — 15(0/0) 14(0/0)

NOP — 9(0/0) — — —
ORI to CCR Byte 1(0/0) — — —
PACK — 2(0/0) 2(1/1) — —

Instruction Execution Timing

10-26 M68060 USER’S MANUAL MOTOROLA

10.16 EXCEPTION PROCESSING TIMES
Table 10-26 indicates the number of clock cycles required for exception processing. The
number of clock cycles includes the time spent in the OEP by the instruction causing the
exception, the stacking of the exception frame, the vector fetch, and the fetch of the first
instruction of the exception handler routine. The number of operand read and write cycles
is shown in parentheses (r/w).

1 Indicates the time from when RSTI is negated until the first
instruction enters the OEP.

2 For these entries, add the effective address calculation time.
3 Assumes either autovector or external vector supplied with zero

wait states.
4 For these entries, add the instruction execution time minus 1 if a

post-exception fault occurs.

Table 10-26. Exception Processing Times
Exception Execution Time

CPU Reset 45(2/0)1

Bus Error 19(1/4)
Address Error 19(1/3)
Illegal Instruction 19(1/2)

Integer Divide By Zero 20(1/3)2

CHK Instruction 20(1/3)2

TRAPV, TRAPcc Instructions 19(1/3)
Privilege Violation 19(1/2)
Trace 19(1/3)
Line A Emulator 19(1/2)
Line F Emulator 19(1/2)
Unimplemented EA 19(1/2)
Unimplemented Integer 19(1/2)
Format Error 23(1/2)
Nonsupported FP 19(1/3)

Interrupt3 23(1/2)

TRAP Instructions 19(1/2)
FP Branch on Unordered Condition 21(1/3)

FP Inexact Result 19(1/3)4

FP Divide By Zero 19(1/3)4

FP Underflow 19(1/3)4

FP Operand Error 19(1/3)4

FP Overflow 19(1/3)4

FP Signaling NAN 19(1/3) 4

FP Unimplemented Data Type 19(1/3)

MOTOROLA

M68060 USER’S MANUAL

A-1

APPENDIX A
MC68LC060

The MC68LC060 is a derivative of the MC68060. The MC68LC060 has the same execution
unit and MMU as the MC68060, but has no FPU. The MC68LC060 is 100% pin compatible
with the MC68060. Disregard all information concerning the FPU when reading this manual.
The following difference exists between the MC68LC060 and the MC68060:

• The MC68LC060 does not contain an FPU. When floating-point instructions are en-
countered, a floating-point disabled exception is taken.

• Bits 31–16 of the processor configuration register contain 0000010000110001, identi-
fying the device as an MC68LC/EC060.

MC68060 Software Package

C-22 M68060 USER’S MANUAL MOTOROLA

C.3.4 Module 5: Floating-Point Library (M68060FPLSP)
The M68060SP provides a library version of the unimplemented general monadic and
dyadic floating-point instructions shown in Table C-3. These routines are System V ABI
compliant as well as IEEE exception-reporting compliant. They are not, however, UNIX
exception-reporting compliant. This library implementation can be compiled with user appli-
cations desiring the functionality of these instructions without having to incur the overhead
of the floating-point unimplemented instruction” exception. The floating-point library contains
floating-point instructions that are implemented by the MC68060. The floating-point library
requires the partial floating-point kernel or full floating-point kernel to be ported to the system
for proper operation.

In addition, the FABS, FADD, FDIV, FINT, FINTRZ, FMUL, FNEG, FSQRT, and FSUB
functions are provided for the convenience of older compilers that make subroutine calls for
all floating-point instructions. The code does not emulate these instructions in integer, but
rather simply executes them.

All input variables must be pushed onto the stack prior to calling the supplied library rou-
tine. For each function, three entry points are provided, each accepting one of the three
possible input operand data types: single, double, and extended precision. For dyadic
operations both input operands are defined to have the same operand data type. For
instance, for a monadic instruction such as the FSIN instruction, the functions are:
_fsins(single-precision input operand), _fsind(double-precision input operand),
_fsinx(extended-precision input operand). For dyadic operations such as the FDIV instruc-
tion, the entry points provided are: _fdivs(both single-precision input operands), _fdivd(both
double-precision input operands, _fdivx(both extended-precision input operands).

To properly call a monadic subroutine, the calling routine must push the input operand onto
the stack first. For instance:

* This example replaces the “fsin.x fp1,fp0” instruction
* Note that _fsinx is actually implemented as an offset from the
* top of the Floating-point Library Module.
fmove.x fp1,-(sp) ; push operand to stack
bsr _fsinx ; result returned in fp0
add.w #12,sp ; clean up stack

To properly call a dyadic subroutine, the calling routine must push the second operand
onto the stack before pushing the first operand onto the stack. For instance:

* This example replaces the “fdiv.x fp1,fp0” instruction
* Note that _fdivx is actually implemented as an offset from the
* top of the Floating-point Library Module.
fmove.x fp1,-(sp) ; push 2nd operand to stack
fmove.x fp0,-(sp) ; push 1st operand to stack
bsr _fdivx ; result returned in fp0
add.w #24,sp ; clean up stack

All routines return the operation result in the register fp0. It is the responsibility of the calling
routine to remove the input operands from the stack after the routine has been executed.
The result’s rounding precision and mode, as well as exception reporting, is dictated by the
value of the FPCR upon subroutine entry. The floating-point status register (FPSR) is set

MC68060 Instructions

D-10

M68060 USER’S MANUAL

MOTOROLA

Table D-3. Exception Vector Assignments for the M68000 Family

Vector
Number(s)

Vector
Offset (Hex)

Assignment

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 00C Address Error
4 010 Illegal Instruction
5 014 Integer Divide-by-Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)
12 030 (Reserved)
13 034 Coprocessor Protocol Violation (Defined for MC68020 and MC68030)
14 038 Format Error
15 03C Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0–15 Instruction Vectors

48 0C0 Floating-Point Branch or Set on Unordered Condition
(Defined for MC68881, MC68882, MC68040, and MC68060)

49 0C4 Floating-Point Inexact Result
(Defined for MC68881, MC68882, MC68040, and MC68060)

50 0C8 Floating-Point Divide-by-Zero
(Defined for MC68881, MC68882, MC68040, and MC68060)

51 0CC Floating-Point Underflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

52 0D0 Floating-Point Operand Error
(Defined for MC68881, MC68882, MC68040, and MC68060)

53 0D4 Floating-Point Overflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

54 0D8 Floating-Point Signaling NAN
(Defined for MC68881, MC68882, MC68040, and MC68060)

55 0DC Floating-Point Unimplemented Data Type
(Defined for MC68040 and MC68060)

56 0E0 MMU Configuration Error (Defined for MC68030 and MC68851)
57 0E4 MMU Illegal Operation Error (Defined for MC68851)
58 0E8 MMU Access Level Violation Error (Defined for MC68851)
59 0EC (Unassigned, Reserved)
60 0F0 Unimplemented Effective Address (Defined for MC68060)
61 0F4 Unimplemented Integer Instruction (Defined for MC68060)

62–63 0F8–0FC (Unassigned, Reserved)
64–255 100–3FC User Defined Vectors (192)

