
NXP USA Inc. - MC68LC060RC66 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 66MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 206-BPGA

Supplier Device Package 206-PGA (47.25x47.25)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68lc060rc66

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68lc060rc66-4473071
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Introduction

1-4

M68060 USER’S MANUAL

MOTOROLA

translated. The PLPA instruction can only generate an access error exception only on super-
visor or write protection violation cases. The PFLUSH instruction operates as a virtual NOP
instruction.

When the MOVEC instruction is used to access the SRP and URP registers and the E- and
P-bits in the TCR, no exceptions are reported. However, those bits are undefined for the
MC68EC060 and must not be used.

1.2 FEATURES

The main features of the MC68060 are as follows:

• 1.6–1.7 Times the MC68040 Performance at the Same Clock Rate with Existing Com-
pliers. 3.2–3.4 Times the Performance of a 25 MHZ MC68040.

• Harvard Architecture with Independent, Decoupled Fetch and Execution Pipelines.

• Branch Prediction Logic with a 256-Entry, 4-Way Set-Associative, Virtual-Mapped
Branch Cache for Improved Branch Instruction Performance.

• A Superscalar Pipeline and Dual Integer Execution Units Achieving Simultaneous, but
not Out-of-Order Instruction Execution.

• An IEEE Standard, MC68040- and MC68881-/MC68882-Compatible FPU.

• An MC68040-Compatible Paged Memory Management Unit with Dual 64-Entry
Address Translation Caches

• Dual 8-Kbyte Caches (Instruction Cache and Data Cache)

• A Flexible, High-Bandwidth Synchronous Bus Interface

• User Object-Code Compatible with All Earlier M68000 Microprocessors

1.3 ARCHITECTURE

The instruction fetch unit (IFU) is a four-stage pipeline for prefetching instructions. The dual
operand execution pipelines (OEPs) (named primary” (pOEP) and secondary (sOEP)) are
four-stage pipelines for decoding the instructions, fetching the required operand(s), and then
performing the actual execution of the instructions. Since the IFU and OEP are decoupled
by a first-in-first-out (FIFO) instruction buffer, the IFU is able to prefetch instructions in
advance of their actual use by the OEPs.

The MC68060 is designed to maximize the OEP’s efficiency through the use of a supersca-
lar pipeline architecture. This architectural advance improves processor performance dra-
matically by exploiting instruction-level parallelism. The term superscalar denotes the ability
to detect, dispatch, execute, and return results from more than one instruction during each
machine cycle from an otherwise conventional instruction stream.

As a result, multiple instructions may be executed in a single machine cycle. Since the dual
OEPs perform in a lock-step mode of operation, the multiple instruction execution is per-
formed simultaneously, but not out-of-order. The net effect is a software-invisible pipeline
architecture capable of sustained execution rates of < 1 machine cycle per instruction of the
M68000 instruction set.

Signal Description

2-8

M68060 USER’S MANUAL

MOTOROLA

for one full BCLK cycle and then three-stated one BCLK cycle after the address bus is idled.
If LOCKE was already negated in the BCLK cycle in which the MC68060 relinquishes the
bus, it will be three-stated in the same BCLK cycle the address bus is idled.

LOCKE is provided to help make the MC68060 bus compatible with the MC68040-style bus
protocol; however, for new designs, external bus arbitration logic can be simplified with the
use of BGR instead of LOCKE.

Do not use LOCKE. The LOCKE protocol breaks the integrity of the locked read-modify-
write sequence if it is possible to retry the last write of a read-modify-write operation. The
reason is that when LOCKE is asserted, a bus arbiter can grant the bus to an alternate mas-
ter when the current bus cycle is finished (before the retry is attempted). The bus is arbi-
trated away, the last write’s retry is deferred until the bus is returned to the processor. In the
meantime, the alternate master can access the same location where the write should have
taken place. Hence, the integrity of the locked read-modify-write sequence is compromised
in this situation.

2.3.9 Cache Inhibit Out (CIOUT)

When asserted, this three-state output indicates that the MC68060 will not cache the current
bus information in its internal caches. Refer to

Section 4 Memory Management Unit

for
more information on CIOUT function. When the MC68060 is not the bus master, the CIOUT
signal is placed in a high-impedance state.

2.3.10 Byte Select Lines (BS3–BS0)

These three-state outputs indicate which bytes within a long-word transfer are being
selected and which bytes of the data bus will be used for the transfer. BS0 refers to D31–
D24, BS1 refers to D23–D16, BS2 refers to D15–D8, and BS3 refers to D7–D0. These sig-
nals are generated to provide byte data select signals which are decoded from the SIZx, A1,
and A0 signals as shown in Table 2-6. These signals are placed in a high-impedance state
when the MC68060 is not the bus master.

2.4 MASTER TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus cycles when the MC68060 is the bus
master. Refer to

Section 7 Bus Operation

 for detailed information about the relationship
of the bus cycle control signals to bus operation.

Table 2-6. Data Bus Byte Select Signals

Transfer Size SIZ1 SIZ0 A1 A0
BS0 BS1 BS2 BS3

D31–D24 D23–D16 D15–D8 D7–D0

Byte 0 1 0 0 0 1 1 1
Byte 0 1 0 1 1 0 1 1
Byte 0 1 1 0 1 1 0 1
Byte 0 1 1 1 1 1 1 0
Word 1 0 0 0 0 0 1 1
Word 1 0 1 0 1 1 0 0

Long Word 0 0 x x 0 0 0 0
Line 1 1 x x 0 0 0 0

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-17

tests that set the BSUN bit in the FPSR status byte if an unordered condition is present when
the conditional test is attempted (IEEE nonaware tests), and 16 tests that do not cause the
BSUN bit in the FPSR status byte (IEEE aware tests). The set of IEEE nonaware tests is
best used:

¥ When porting a program from a system that does not support the IEEE 754 standard to
a conforming system, or

¥ When generating high-level language code that does not support IEEE floating-point
concepts (i.e., the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point compare
operation is a NAN. The inclusion of the unordered condition in floating-point branches
destroys the familiar trichotomy relationship (greater than, equal, less than) that exists for
integers. For example, the opposite of floating-point branch greater than (FBGT) is not float-
ing-point branch less than or equal (FBLE). Rather, the opposite condition is floating-point
branch not greater than (FBNGT). If the result of the previous instruction was unordered,
FBNGT is true; whereas, both FBGT and FBLE would be false since unordered fails both of
these tests. Compiler programmers should be particularly careful of the lack of trichotomy in
the floating-point branches since it is common for compilers to invert the sense of conditions.

When using the IEEE nonaware tests, the BSUN bit and the NAN bit are set in the FPSR,
unless the branch is an FBEQ or an FBNE. If the BSUN exception is enabled in the FPCR,
an exception is taken. Therefore, the IEEE nonaware program may be interrupted if an
unexpected condition occurs.

Compilers and programmers who are knowledgeable of the IEEE 754 standard should use
the IEEE aware tests in programs that contain ordered and unordered conditions. Since the
ordered or unordered attribute is explicitly included in the conditional test, the BSUN bit is
not set in the FPSR EXC byte when the unordered condition occurs.

Table 6-9 summarizes the conditional mnemonics, definitions, equations, predicates, and
whether the BSUN bit is set in the FPSR EXC byte for the 32 floating-point conditional tests.
The equation column lists the combination of FPCC bits for each test in the form of an equa-
tion.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-31

dler is enabled. If the destination is a floating-point data register, the register is not affected,
and a pre-instruction exception is reported. If the destination is a memory or integer data
register, then an undefined result is stored, and a post-instruction exception is taken imme-
diately. In addition, the processor incorrectly reports an underflow exception if the result of
a floating-point multiply is a normalized number with an exponent of $0000. Exception pro-
cessing begins with the M68060SP UNFL exception handler to provide MC68881-compati-
ble operation. The M68060SP then determines whether or not control is passed back to
normal instruction flow (the OVFL bit in the FPCR exception enable byte is cleared), to the
user OVFL handler (the OVFL bit in the FPCR exception enable byte is set) or the user INEX
handler (the OVFL bit in the FPCR exception enable byte is cleared, but the INEX bit in the
FPCR exception enable byte is set and the corresponding INEX bit in the FPSR EXC byte
is also set).

6.6.5.1 TRAP DISABLED RESULTS (FPCR UNFL BIT CLEARED). The result that is
stored in the destination is either a denormalized number or zero. Denormalization is accom-
plished by shifting the mantissa of the intermediate result to the right while incrementing the
exponent until it is equal to the denormalized exponent value for the destination format. The
denormalized intermediate result is rounded to the selected rounding precision or destina-
tion format.

If, in the process of denormalizing the intermediate result, all of the significant bits are shifted
off to the right, the selected rounding mode determines the value to be stored at the desti-
nation, as shown in Table 6-14.

6.6.5.2 TRAP ENABLED RESULTS (FPCR UNFL BIT SET). The result stored in the des-
tination is the same as the result stored when traps are disabled. For an FMOVE OUT, the
operand is stored in the destination memory or integer data register before control is passed
to the user UNFL handler as a post-instruction exception. Otherwise, if the destination is a
floating-point data register, control is passed to the user UNFL handler as a pre-instruction
exception when the next floating-point instruction is encountered.

Table 6-14. Underflow Rounding Mode Values
Rounding Mode Result

RN Zero, with the sign of the intermediate result.
RZ Zero, with the sign of the intermediate result.

RM For positive overflow, + zero; for negative underflow, smallest denormalized neg-
ative number.

RP For positive overflow, smallest denormalized positive number; for negative under-
flow, —zero.

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-3

7.2 FULL-, HALF-, AND QUARTER-SPEED BUS OPERATION AND BCLK

To simplify the description of full-, half-, and quarter-speed bus operation, the term Òbus
clockÓ or ÒBCLKÓ is introduced to describe the effective frequency of bus operation. The bus
clock is analogous to the MC68040 clock input called BCLK. The MC68040 BCLK defines
when input signals are sampled and when output signals begin to transition. Once the rela-
tionship of CLK, CLKEN, and the virtual BCLK is established, it is possible to describe the
MC68060 bus more easily, relative to BCLK.

CLKEN allows the bus to synchronize to BCLK which is running at half or quarter speed of
the processor clock (CLK). On rising CLK edges in which CLKEN is asserted, inputs to the
processor are recognized and outputs of the processor may begin to assert, negate, or
three-state. On rising CLK edges in which CLKEN is negated, no inputs are recognized and
no outputs begin to change (except BB and TIP). Figure 7-1 illustrates the general relation-
ship between CLK, CLKEN, and most input and output signals.

For brevity, the term Òfull-speed busÓ is introduced to refer to systems in which BCLK is run-
ning at the same frequency as CLK. The term Òhalf-speed busÓ refers to systems in which
BCLK is running at half the frequency of CLK. For those familiar with the MC68040, the half-
speed bus is analogous to the MC68040 implementation. The term Òquarter-speed busÓ
refers to systems in which BCLK is running at one quarter the frequency of CLK. The
MC68060 clocking mechanism is designed so that systems designed today can be
upgraded with higher-frequency MC68060s, without forcing the rest of the system to operate
at the same higher processor frequency. This flexibility also allows the MC68060 to be used
in existing MC68040 system designs.

A full-speed bus design is achieved by continuously asserting CLKEN as shown in Figure
7-2. A half speed bus is achieved by asserting CLKEN about every other rising edge of CLK.
Figure 7-3 shows a timing diagram of the relationship between CLK, CLKEN, and BCLK for
half-speed bus operation. A quarter-speed bus is achieved by asserting CLKEN once about
every four rising edges of CLK. Figure 7-4 shows a timing diagram of the relationship
between CLK, CLKEN, and BCLK for quarter-speed bus operation.

Note that once BCLK has been established, inputs and outputs appear to be synchronized
to this virtual BCLK. To simplify the description of MC68060 bus operation, the rising edges

Figure 7-4. Quarter-Speed Clock

CLKEN

CLK

BCLK

BB or TIP
THREE-STATING FROM

ASSERTED STATE

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-5

LEÑLock End Bit
0 = Negate external LOCKE signal.
1 = Assert external LOCKE signal.

SLEÑShadow Copy, Lock End Bit
 0 = LOCKE asserted at time of exception.
 1 = LOCKE negated at time of exception.

The external LOCK signal is asserted starting with the assertion of TS for the bus cycle of
the next operand read or write after setting the L-bit in the BUSCR. The external LOCKE
signal is asserted starting with the assertion of TS for the bus cycle of the next operand write
after setting the LE bit in the BUSCR. Both the LOCK and LOCKE external signals are
negated the cycle after the final TA assertion associated with the TS that asserted LOCKE.
The final operand write cycle must not be misaligned. A final write to the BUSCR must be
made in order to clear the L and LE bits even though the external signals have already
negated. The L and LE bits are cleared when the processor is reset.

The SL and SLE bits in the BUSCR are provided to retain a copy of the L and LE bits at the
time of an exception. When an exception occurs, the MC68060 copies the L and LE bits to
the SL and SLE bits respectively, negates the external LOCK and LOCKE pins, and clears
the L and LE bits. It is recommended that all interrupts be masked prior to the use of BUSCR.
If the cause of the exception is an access error, a bit in the fault status long word (FSLW) in
the access error frame is used to signify that a locked sequence was being executed at the
time of the fault.

7.5 DATA TRANSFER MECHANISM

Figure 7-6 illustrates how the bus designates operands for transfers on a byte boundary sys-
tem. The integer unit handles floating-point operands as a sequence of related long-word
operands. These designations are used in the figures and descriptions that follow.

Figure 7-7 illustrates general multiplexing between an internal register and the external bus.
The internal register connects to the external data bus through the internal data bus and
multiplexer. The data multiplexer establishes the necessary connections for different com-
binations of address and data sizes.

Unlike the MC68020 and MC68030 processors, the MC68060 does not support dynamic
bus sizing and expects the referenced device to accept the requested access width. The
MC68150 dynamic bus sizer is designed to allow the 32-bit MC68060 bus to communicate

Figure 7-6. Internal Operand Representation

OP0

815162324

LONG-WORD OPERAND

31

OP1 OP2 OP3

OP2 OP3

OP3

07

WORD OPERAND

BYTE OPERAND

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-11

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and write
cycles. The table confirms that alignment significantly affects bus cycle throughput for non-
cachable accesses. For example, in Figure 7-9 the misaligned long-word operand took three
bus cycles because the byte offset = $1. If the byte offset = $0, then it would have taken one

Figure 7-11. Misaligned Long-Word Read Bus Cycle Timing

A31—A2

BCLK

SIZ1—SIZ0

D31—D24

TS

TIP

TA

A1—A0

D23—D16

D15—D8

D7—D0

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE
READ

WORD
READ

BYTE
READ

R/W

C1 C2 C1 C2 C1 C2

BYTE WORD BYTE

1 2 0

MISCELLANEOUS
 ATTRIBUTES

BS0

BS1

BS2

BS3

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-21

Figure 7-17. Burst-Inhibited Line Read Bus Cycle Timing

LINE LONG LONG LONG

INHIBITED
LINE READ

LONG-WORD
READ

LONG-WORD
READ

LONG-WORD
READ

C1 C2 C3 C4 C6 C7C5 C8

BCLK

SIZ1—SIZ0

D31—D0

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

TBI

CIOUT

CLA

A3—A2

SAS

10 11 0001

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

BS3—BS0

A31—A4
A1—A0

Bus Operation

7-54 M68060 USER’S MANUAL MOTOROLA

relinquish the bus. But, if the alternate master is another MC68060, it may not be advisable
to allow locked sequences to be broken. Figure 7-46 illustrates BGR functionality on locked
sequences.

When the bus has been granted to the processor in response to the assertion of BR, one of
two situations can occur. In the first situation, the processor monitors BB and TS to deter-
mine when the bus cycle of the alternate bus master is complete and to guarantee that
another master has not already started another bus tenure. After the alternate bus master
negates and three-states BB, the processor asserts BB to indicate explicit bus ownership
and begins the bus cycle by asserting TS. The processor continues to assert BB until the
external arbiter negates BG, after which BB is driven negated at the completion of the bus
cycle, then forced to a high-impedance state. As long as BG is asserted, BB remains
asserted to indicate the bus is owned, and the processor continuously drives the address
bus, attributes, and control signals. The processor negates BR when there are no pending
internal requests to allow the external arbiter to grant the bus to an alternate bus master if
necessary.

In the second situation, the processor samples BB until the alternate master negates BB.
Then the processor takes implicit ownership of the bus. Implicit ownership of the bus occurs
when the processor is granted the bus, but there are no pending bus cycles. The MC68060
does not drive the bus and BB if the bus is implicitly owned. This is different from the
MC68040 which drives the address, attributes, and control signals during implicit ownership
of the bus. If an internal access request is generated, the processor assumes explicit own-
ership of the bus and immediately begins an access, simultaneously asserting BB, BR, TIP,
and TS. If the external arbiter keeps BG asserted to the processor, the processor keeps BB
asserted and either executes active bus cycles or drives the address and attributes with
undefined values in-between active bus cycles.

BR can be used by the external arbiter as an indication that the processor needs the bus.
However, there is no guarantee that when the bus is granted to the processor, that a bus
cycle will be performed. At best, BR must be used as status output that the processor needs
the bus, but not as an indication that the processor is in a certain bus arbitration state. Figure
7-41 provides a high-level arbitration diagram that can be used by external arbiters to predict
how the MC68060 operates as a function of external signals, and internal signals. For
instance, note that the relationship between the internal BR and the external BR is best
described as a synchronous delay off BCLK.

Figure 7-41 is a bus arbitration state diagram for the MC68040 bus arbitration protocol.
Table 7-6 lists conditions that cause a change to and from the various states. Table 7-7 lists
a summary of the bus conditions and states.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-13

130 O.Pin A5 I/O
131 I.Pin A5 I/O
132 IO.Ctl A5—A4 ena Ñ
133 O.Pin A6 I/O
134 I.Pin A6 I/O
135 O.Pin A7 I/O
136 I.Pin A7 I/O
137 IO.Ctl A9—A6 ena Ñ
138 O.Pin A8 I/O
139 I.Pin A8 I/O
140 O.Pin A9 I/O
141 I.Pin A9 I/O
142 O.Pin D31 I/O
143 I.Pin D31 I/O
144 O.Pin D30 I/O
145 I.Pin D30 I/O
146 IO.Ctl D31—D28 ena Ñ
147 O.Pin D29 I/O
148 I.Pin D29 I/O
149 O.Pin D28 I/O
150 I.Pin D28 I/O
151 O.Pin D27 I/O
152 I.Pin D27 I/O
153 O.Pin D26 I/O
154 I.Pin D26 I/O
155 IO.Ctl D27—D24 ena Ñ
156 O.Pin D25 I/O
157 I.Pin D25 I/O
158 O.Pin D24 I/O
159 I.Pin D24 I/O
160 O.Pin D23 I/O
161 I.Pin D23 I/O
162 O.Pin D22 I/O
163 I.Pin D22 I/O
164 IO.Ctl D23—D20 ena Ñ
165 O.Pin D21 I/O
166 I.Pin D21 I/O
167 O.Pin D20 I/O
168 I.Pin D20 I/O
169 O.Pin D19 I/O
170 I.Pin D19 I/O
171 O.Pin D18 I/O
172 I.Pin D18 I/O
173 IO.Ctl D19—D16 ena Ñ
174 O.Pin D17 I/O
175 I.Pin D17 I/O
176 O.Pin D16 I/O
177 I.Pin D16 I/O
178 O.Pin D15 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-24 M68060 USER’S MANUAL MOTOROLA

 "191 (BC_2, *, control, 0), " &
 "192 (BC_1, A(22), input, X), " & -- a[23:20]
 "193 (BC_2, A(22), output3, X, 191, 0, Z), " &
 "194 (BC_1, A(23), input, X), " &
 "195 (BC_2, A(23), output3, X, 191, 0, Z), " &
 "196 (BC_1, A(24), input, X), " &
 "197 (BC_2, A(24), output3, X, 200, 0, Z), " &
 "198 (BC_1, A(25), input, X), " &
 "199 (BC_2, A(25), output3, X, 200, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "200 (BC_2, *, control, 0), " & -- a[27:24]
 "201 (BC_1, A(26), input, X), " &
 "202 (BC_2, A(26), output3, X, 200, 0, Z), " &
 "203 (BC_1, A(27), input, X), " &
 "204 (BC_2, A(27), output3, X, 200, 0, Z), " &
 "205 (BC_1, A(28), input, X), " &
 "206 (BC_2, A(28), output3, X, 209, 0, Z), " &
 "207 (BC_1, A(29), input, X), " &
 "208 (BC_2, A(29), output3, X, 209, 0, Z), " &
 "209 (BC_2, *, control, 0), " & -- a[31:28]
 "210 (BC_1, A(30), input, X), " &
 "211 (BC_2, A(30), output3, X, 209, 0, Z), " &
 "212 (BC_1, A(31), input, X), " &
 "213 (BC_2, A(31), output3, X, 209, 0, Z) ";
 end MC68060;

9.2 DEBUG PIPE CONTROL MODE

A debug pipe control mode is implemented on the MC68060 to allow special chip functions
to be accomplished. These functions are useful during system level hardware development
and operating system debug. Access to the debug pipe control mode is achieved by negat-
ing the JTAG signal. When in the debug pipe control mode, the regular JTAG interface is
used by the debug pipe control mode, and is therefore not available.

The debug pipe control mode uses the resulting serial interface to load commands that allow
various operations on the processor to occur. Some of the operations are: halt the central
processing unit (CPU), restart the CPU, insert select commands into the primary pipeline,
disable select processor configurations, force all outputs to high-impedance state, release
all outputs from high-impedance state, and generate an emulator interrupt.

The advantage of using the debug pipe control mode is that the processor is allowed to oper-
ate normally and at its normal frequency. The only difference is that the processor no longer
has the regular JTAG interface. This should not be a problem since the regular JTAG inter-
face is not used during normal processor operations.

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-5

BFEXTS Extract Bit Field Signed pOEP-only
BFEXTU Extract Bit Field Unsigned pOEP-only
BFFFO Find First One in Bit Field pOEP-only
BFINS Insert Bit Field pOEP-only
BFSET Set Bit Field pOEP-only
BFTST Test Bit Field pOEP-only
BKPT Breakpoint pOEP-only
BRA Branch Always pOEP-only
BSET Dy, Test a Bit and Set pOEP-only
BSET #<imm>, Ò pOEP-until-last
BSR Branch to Subroutine pOEP-only
BTST Dy, Test a Bit pOEP-only
BTST #<imm>, Ò pOEP-until-last
CAS Compare and Swap with Operand pOEP-only
CHK Check Register Against Bounds pOEP-only
CLR Clear an Operand pOEP | sOEP
CMP Compare pOEP | sOEP
CMPA Compare Address pOEP | sOEP
CMPI,Dx Compare Immediate pOEP | sOEP
CMPI,—(Ax)+ Ò pOEP | sOEP
Remaining CMPI Ò pOEP-until-last
CMPM Compare Memory pOEP-until-last
DBcc Test Condition, Decrement and Branch pOEP-only
DIVS.L Signed Divide Long pOEP-only
DIVS.W Signed Divide Word pOEP-only
DIVU.L Unsigned Long Divide pOEP-only
DIVU.W Unsigned Divide Word pOEP-only
EOR Exclusive OR Logical pOEP | sOEP
EORI,Dx Exclusive OR Immediate pOEP | sOEP
EORI,—(Ax)+ Ò pOEP | sOEP
Remaining EORI Ò pOEP-until-last
EORI to CCR Exclusive OR Immediate to Condition Codes pOEP-only
EXG Exchange Registers pOEP-only
EXT Sign Extend pOEP | sOEP
EXTB.L Sign Extend Byte to Long pOEP | sOEP
ILLEGAL Take Illegal Instruction Trap pOEP | sOEP
JMP Jump pOEP-only
JSR Jump to Subroutine pOEP-only
LEA Load Effective Address pOEP | sOEP
LINK Link and Allocate pOEP-until-last
LSL Logical Shift Left pOEP | sOEP
LSR Logical Shift Right pOEP | sOEP
MOVE,Rx Move Data from Source to Destination pOEP | sOEP
MOVE Ry, Ò pOEP | sOEP
MOVE <mem>y,<mem>x Ò pOEP-until-last
MOVE #<imm>,<mem>x Ò pOEP-until-last
MOVEA Move Address pOEP | sOEP
MOVE from CCR Move from Condition Codes pOEP-only

Table 10-2. MC68060 Superscalar Classification
of M680x0 Integer Instructions (Continued)

Mnemonic Instruction Superscalar Classification

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-19

10.9 SHIFT/ROTATE EXECUTION TIMES

Table 10-13 indicates the number of clock cycles required for execution of the shift and
rotate instructions. The number of operand read and write cycles is shown in parentheses
(r/w). Where indicated, the number of clock cycles and r/w cycles must be added to those
required for effective address calculation.

10.10 BIT MANIPULATION AND BIT FIELD EXECUTION TIMES

Table 10-14 and Table 10-15 indicate the number of clock cycles required for execution of
the bit manipulation instructions. The execution times for the bit field instructions is shown
in Table 10-16. The number of operand read and write cycles is shown in parentheses (r/w).
Where indicated, the number of clock cycles and r/w cycles must be added to those required
for effective address calculation.

1 For entries in this column, add the effective address calculation time. These operations
are word-size only.

1 For entries in this column, add the effective address calculation
time.

Table 10-13. Shift/Rotate Execution Times
Instruction Size Register Memory 1

ASL, ASR Byte, Word 1(0/0) 1(1/1)
Ò Long 1(0/0) Ñ

LSL, LSR Byte, Word 1(0/0) 1(1/1)
Ò Long 1(0/0) Ñ

ROL, ROR Byte, Word 1(0/0) 1(1/1)
Ò Long 1(0/0) Ñ

ROXL, ROXR Byte, Word 1(0/0) 1(1/1)
Ò Long 1(0/0) Ñ

Table 10-14. Bit Manipulation (Dynamic Bit Count)
Execution Times

Instruction Size Register Memory 1

BCHG Byte Ñ 1(1/1)
Ò Long 1(0/0) Ñ

BCLR Byte Ñ 1(1/1)
Ò Long 1(0/0) Ñ

BSET Byte Ñ 1(1/1)
Ò Long 1(0/0) Ñ

BTST Byte Ñ 1(1/0)
Ò Long 1(0/0) Ñ

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-15

C.3.2.2.2 System-Supplied Floating-Point Arithmetic Exception Handler Call-Outs.

The call-outs _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz,
_real_inex are needed only if the system turns on the floating-point exceptions via the float-
ing-point control register (FPCR) exception enable byte. These call-outs point to the arith-
metic handlers that must be supplied for IEEE trap enabled operation. Documentation for
these handlers are fully explained in

Section 6 Floating-Point Unit

. Additional information
on how these call-outs are reached is found in

C.3.2.3 Bypassing Module-Supplied Float-
ing-Point Arithmetic Handlers

 and

C.3.2.4 Exceptions During Emulation

.

C.3.2.2.3 Exception-Related Call-Outs.

When in the process of emulating any of the float-
ing-point exception handlers, there are conditions that require the M68060SP to emulate an
access error, trace, or trap exception. The M68060SP does so by cleaning up the stack to
the conditions prior to executing the exception handler, converting the original stack frame
to the appropriate stack frame and then branching to those system-supplied exception han-
dlers.

The call-outs _real_access, _real_trace, and _real_trap are defined to provide the system
integrator a choice of either having the module point directly to the actual access error, trace
and trap exception handlers or to an alternate routine that would calculate the exception
handler address from the vector table prior to jumping to actual handlers. The direct imple-
mentation is ideal for systems that do not anticipate any changes to the vector table, and for
which performance is more critical. The indirect approach of consulting the vector table is
more accurate in that if the instruction were implemented, the actual handlerÕs address is
fetched from the appropriate vector table entry before branching there.

C.3.2.2.4 Exit Point Call-Outs.

The _fpsp_done call-out is provided as a means for the
system to do any clean-up, if necessary, before executing the RTE instruction to return to
normal instruction execution. All the supplied floating-point handlers will either branch to this
call-out or exit through the call-outs _real_fline, _real_fpu_disabled, _real_trace, _real_trap,
_real_access, _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz, and
_real_inex exit points.

C.3.2.3 BYPASSING MODULE-SUPPLIED FLOATING-POINT ARITHMETIC
HANDLERS.

A system that does not require full IEEE trap enabled exception compliance
or does not require the services of the exceptional operand, may choose to bypass the
fpsp{ovfl,unfl,snan,operr,dz,inex} entry points. To better assess whether or not to write a
customized floating-point arithmetic handler, it is important to know what the processor
hardware does and what the M68060SP handlers do individually.

The term ÒopclassÓ is used in the following paragraphs. An opclass zero instruction refers to
a floating-point general instruction whose source operand(s) and destination operand are all
floating-point data registers (no operands in memory). An opclass two instruction refers to a
floating-point general instruction in which one source operand is in memory or an integer
data register, but the destination is a floating-point data register. An opclass three instruction
refers to an FMOVE instruction that has a memory or integer data register destination.

MC68060 Instructions

D-6

M68060 USER’S MANUAL

MOTOROLA

Table D-2. M68000 Family Instruction Set

Mnemonic Description

ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ANDI to CCR
ANDI to SR
ASL, ASR

Add Decimal with Extend
Add
Address
Add Immediate
Add Quick
Add with Extend
Logical AND
Logical AND Immediate
AND Immediate to Condition Code Register
AND Immediate to Status Register
Arithmetic Shift Left and Right

Bcc
BCHG
BCLR
BFCHG
BFCLR
BFEXTS
BFEXTU
BFFFO
BFINS
BFSET
BFTST
BGND
BKPT
BRA
BSET
BSR
BTST

Branch Conditionally
Test Bit and Change
Test Bit and Clear
Test Bit Field and Change
Test Bit Field and Clear
Signed Bit Field Extract
Unsigned Bit Field Extract
Bit Field Find First One
Bit Field Insert
Test Bit Field and Set
Test Bit Field
Enter Background Mode
Breakpoint
Branch
Test Bit and Set
Branch to Subroutine
Test Bit

CALLM
CAS
CAS2
CHK
CHK2
CINV
CLR
CMP
CMPA
CMPI
CMPM
CMP2
cpBcc
cpDBcc
cpGEN
cpRESTORE
cpSAVE
cpScc
cpTRAPcc

CALL Module
Compare and Swap Operands
Compare and Swap Dual Operands
Check Register Against Bound
Check Register Against Upper and Lower Bounds
Invalidate Cache Entries
Clear
Compare
Compare Address
Compare Immediate
Compare Memory to Memory
Compare Register Against Upper and Lower Bounds
Branch on Coprocessor Condition
Test Coprocessor Condition Decrement and Branch
Coprocessor General Function
Coprocessor Restore Function
Coprocessor Save Function
Set on Coprocessor Condition
Trap on Coprocessor Condition

DBcc
DIVS, DIVSL
DIVU, DIVUL

Test Condition, Decrement and Branch
Signed Divide
Unsigned Divide

EOR
EORI
EORI to CCR
EORI to SR
EXG
EXT, EXTB

Logical Exclusive-OR
Logical Exclusive-OR Immediate
Exclusive-OR Immediate to Condition Code Register
Exclusive-OR Immediate to Status Register
Exchange Registers
Sign Extend

