
Freescale Semiconductor - MC68LC060ZU66 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68060

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 66MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 304-LBGA Exposed Pad

Supplier Device Package 304-TBGA (31x31)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68lc060zu66

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68lc060zu66-4468501
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Table of Contents

xii

M68060 USER’S MANUAL

MOTOROLA

4.6.2 Effect of MDIS on Address Translation .. 4-30
4.7 MMU Instructions.. 4-30
4.7.1 MOVEC .. 4-30
4.7.2 PFLUSH ... 4-30
4.7.3 PLPA .. 4-30

Section 5
Caches

5.1 Cache Operation... 5-1
5.2 Cache Control Register .. 5-5
5.3 Cache Management ... 5-6
5.4 Caching Modes... 5-7
5.4.1 Cachable Accesses .. 5-7
5.4.1.1 Writethrough Mode... 5-7
5.4.1.2 Copyback Mode ... 5-8
5.4.2 Cache-Inhibited Accesses .. 5-8
5.4.3 Special Accesses ... 5-9
5.5 Cache Protocol ... 5-9
5.5.1 Read Miss... 5-9
5.5.2 Write Miss... 5-9
5.5.3 Read Hit.. 5-9
5.5.4 Write Hit .. 5-10
5.6 Cache Coherency ... 5-10
5.7 Memory Accesses for Cache Maintenance .. 5-11
5.7.1 Cache Filling... 5-11
5.7.2 Cache Pushes .. 5-13
5.8 Push Buffer ... 5-13
5.9 Store Buffer... 5-13
5.10 Push Buffer and Store Buffer Bus Operation.. 5-14
5.11 Branch Cache ... 5-14
5.12 Cache Operation Summary .. 5-15
5.12.1 Instruction Cache.. 5-15
5.12.2 Data Cache... 5-16

Section 6
Floating-Point Unit

6.1 Floating-Point User Programming Model.. 6-2
6.1.1 Floating-Point Data Registers (FP7–FP0) .. 6-3
6.1.2 Floating-Point Control Register (FPCR) ... 6-3
6.1.2.1 Exception Enable Byte ... 6-3
6.1.2.2 Mode Control Byte.. 6-3
6.1.3 Floating-Point Status Register (FPSR)... 6-4
6.1.3.1 Floating-Point Condition Code Byte ... 6-5
6.1.3.2 Quotient Byte.. 6-5
6.1.3.3 Exception Status Byte .. 6-5

Introduction

1-6

M68060 USER’S MANUAL

MOTOROLA

The architecture of the MC68060 processor is implemented in the following major blocks:

• Execution Unit
—Instruction Fetch Unit
—Integer Unit
—FPU

• Memory Units
—Instruction Memory Unit

• Instruction ATC
• Instruction Cache
• Instruction Cache Controller

—Data Memory Unit
• Data ATC
• Data Cache
• Data Cache Controller

• Bus Controller

These major units execute concurrently to maximize sustained performance. Note that the
caches reside on separate buses allowing concurrent instruction fetch, data read, and data
write operations (internal Harvard architecture).

Figure 1-1. MC68060 Block Diagram

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

MOTOROLA

M68060 USER’S MANUAL

2-1

SECTION 2
SIGNAL DESCRIPTION

This section contains brief descriptions of the MC68060 signals in their functional groups
(see Figure 2-1). Each signal’s function is briefly explained, referencing other sections con-
taining detailed information about the signal and related operations. Table 2-1 lists the
MC68060 signal names, mnemonics, and functional descriptions of the signals. Timing
specifications for these signals can be found in

Section 12 Electrical and Thermal Char-
acteristics

.

NOTE

Assertion

 and

negation

 are used to specify forcing a signal to a
particular state.

Assertion

 and

assert

 refer to a signal that is ac-
tive or true.

Negation

 and

negate

 refer to a signal that is inactive
or false. These terms are used independently of the voltage level
(high or low) that they represent.

Table 2-1. Signal Index

Signal Name Mnemonic Function

Address Bus A31–A0 32-bit address bus used to address any of 4-Gbytes.
Cycle Long-Word Ad-
dress CLA Controls the operation of A3 and A2 during bus cycles.

Data Bus D31–D0 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

Transfer Type TT1,TT0 Indicates the general transfer type: normal, MOVE16, alternate logical function
code, and acknowledge.

Transfer Modifier TM2–TM0 Indicates supplemental information about the access.

Transfer Line Number TLN1,TLN0 Indicates which cache line in a set is being pushed or loaded by the current line
transfer cycle.

User-Programmable
Attributes UPA1,UPA0 User-defined signals, controlled by the corresponding user attribute bits from the

address translation entry.
Read/Write R/W Identifies the transfer as a read or write.

Transfer Size SIZ1,SIZ0
Indicates the data transfer size. These signals, together with A0 and A1,
define the active sections of the data bus. Alternately, BS3–BS0 can be used for
this function.

Bus Lock LOCK Indicates a bus cycle is part of a read-modify-write operation and that the
sequence of bus cycles should not be interrupted.

Bus Lock End LOCKE Indicates the current bus cycle is the last in a locked sequence of bus cycles.
Cache Inhibit Out CIOUT Indicates the processor will not cache the current bus transfer information.

Byte Select BS3–BS0 Indicate which bytes within a long word are selected and which data bus bytes
are valid.

Transfer Start TS Indicates the beginning of a bus cycle.
Transfer in Progress TIP Asserted for the duration of a bus cycle.
Starting Termination Ac-
knowledge Signal Sam-
pling

SAS Indicates the MC68060 will begin sampling the termination acknowledge signals.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Floating-Point Unit

6-6

M68060 USER’S MANUAL

MOTOROLA

6.1.3.4 ACCRUED EXCEPTION BYTE.

The AEXC byte contains five exception bits (see
Figure 6-7) that the IEEE 754 standard requires for exception-disabled operations. These
exceptions are logical combinations of the bits in the EXC byte. The AEXC byte contains the
history of all floating-point exceptions that have occurred since the user last cleared the
AEXC byte. In normal operations, only the user clears this byte by writing to the FPSR; how-
ever, a reset or a restore operation of the null state can also clear the AEXC byte.

Many users elect to disable traps for all or part of the floating-point exception classes. The
AEXC byte makes it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (FMOVEM and FMOVE excluded), the bits in the EXC byte
are logically combined to form an AEXC value that is logically ORed into the existing AEXC
byte. This operation creates sticky floating-point exception bits in the AEXC byte that the
user needs to poll only once (i.e., at the end of a series of floating-point operations). A sticky
bit is one that remains set until the user clears it.

Setting or clearing the AEXC bits neither causes nor prevents an exception. The following
equations show the comparative relationship between the EXC byte and AEXC byte. Com-
paring the current value in the AEXC bit with a combination of bits in the EXC byte derives
a new value in the corresponding AEXC bit. These equations apply to setting the AEXC bits
at the end of each operation affecting the AEXC byte:

Figure 6-6. Floating-Point Exception Status Byte (FPSR)

Figure 6-7. Floating-Point Accrued Exception Byte (FPSR)

BRANCH/SET ON
UNORDERED

SNAN OPERR OVFL UNFL DZ INEX2 INEX1

15 14 13 12 11 10 9 8

INEXACT DECIMAL
INPUT

INEXACT OPERATION

DIVIDE-BY-ZERO

UNDERFLOWOVERFLOW

OPERAND ERROR

SIGNALING NOT-A-NUMBER

BSUN

IOP OVFL UNFL DZ INEX

7 6 5 4 3 2 0

INEXACT

INVALID OPERATION

DIVIDE-BY-ZERO

UNDERFLOW

OVERFLOW

RESERVED

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-19

6.5 FLOATING-POINT EXCEPTIONS
There are two classes of floating-point-related exceptions: nonarithmetic floating-point
exceptions and arithmetic floating-point exceptions. The latter relates to the handling of
arithmetic exceptions caused by floating-point activity, and the former includes unimple-
mented floating-point instructions, unsupported data types and unimplemented effective
addresses not related to the handling of arithmetic exceptions. The floating-point format
error exception is considered an integer unit exception (see Section 8 Exception Process-
ing). The following paragraphs detail floating-point exceptions and how the MC68060 and
M68060SP handle them. Table 6-10 lists the vector numbers related to floating-point excep-
tions.

The following paragraphs detail nonarithmetic floating-point exceptions.

6.5.1 Unimplemented Floating-Point Instructions
Table 6-11 lists the floating-point instructions which are unimplemented on the MC68060.
Refer to 8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions for back-
ground material. Motorola provides the M68060SP, a software package that includes float-
ing-point emulation for the MC68060. Refer to Appendix C for software porting information.

Table 6-10. Floating-Point Exception Vectors
Vector

Number
Vector Offset

(Hex)
Frame
Format

Program
Counter

Assignment

11
55
60

02C
0DC
0F4

2
0,2,3

0

next
next
fault

Floating-Point Unimplemented Instruction Exception
Floating-Point Unimplemented Data Type
Unimplemented Effective Address Exception

48
49
50
51
52
53
54

0C0
0C4
0C8
0CC
0D0
0D4
0D8

0
0,3
0

0,3
0,3
0,3
0,3

fault
next
next
next
next
next
next

Floating-Point Branch or Set on Unordered Condition
Floating-Point Inexact Result
Floating-Point Divide-by-Zero
Floating-Point Underflow
Floating-Point Operand Error
Floating-Point Overflow
Floating-Point SNAN

For floating-point pre-instruction exceptions, the PC points to the next floating-point instruction and the stack frame of for-
mat 0 is generated. For post-instruction exceptions, the PC points to the next instruction and the frame of format 3 is gen-
erated.

MOTOROLA

M68060 USER’S MANUAL

7-1

SECTION 7
BUS OPERATION

The MC68060 bus interface supports synchronous data transfers between the processor
and other devices in the system. This section provides a functional description of the bus,
the signals that control the bus, and the bus cycles provided for data transfer operations.
Operation of the bus is defined for transfers initiated by the processor as a bus master and
for transfers initiated by an alternate bus master which the processor snoops as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the reset operation
are also included. For timing specifications, refer to

Section 12 Electrical and Thermal
Characteristics

.

7.1 BUS CHARACTERISTICS

The MC68060 uses the address bus (A31A0) to specify the address for a data transfer and
the data bus (D31–D0) to transfer the data. Control and attribute signals indicate the begin-
ning and type of a bus cycle as well as the address space and size of the transfer. The
selected device then controls the length of the cycle by terminating it using the control sig-
nals.

The MC68060 CLK is distributed internally to provide logic timing. CLKEN indicates impor-
tant rising CLK edges for the bus interface controller but does not directly affect internal
operation or timing of the MC68060. Its main purpose is to allow for easier system design.
CLKEN makes possible full-, half-, and quarter-speed bus operation by providing a signal to
qualify valid rising CLK edges. In general, on rising CLK edges in which CLKEN is asserted,
inputs are sampled and outputs begin to change. However, there are some inputs that are
sampled and outputs that transition on rising CLK edges when CLKEN is negated.

Inputs to the MC68060 (other than the IPLx and RSTI signals) are synchronously sampled
and must be stable during the sample window defined by t

su

 and t

hi

 (see Figure 7-1) to guar-
antee proper operation. The asynchronous IPLx and RSTI signals are sampled on the rising
edge of CLK, but are internally synchronized to resolve the input to a valid level before being
used. Since the timing specifications for the MC68060 are referenced to the rising edge of
CLK, they are valid only for the specified operating frequency and must be scaled for lower
operating frequencies.

Outputs to the MC68060 begin to transition on rising CLK edges in which CLKEN is
asserted. However, when BB and TIP transition from being asserted to being three-stated,
they are driven negated for one CLK before they are three-stated. Refer to Figure 7-2, Fig-
ure 7-3, and Figure 7-4 for an illustration. Furthermore, the processor status signals (PSTx),
RSTO, and IPEND output signals are updated on rising edges of CLK regardless of the
CLKEN input.

Bus Operation

7-16

M68060 USER’S MANUAL

MOTOROLA

cycles, the bus controller still treats the four transfers as a single line bus cycle and does not
allow other unrelated processor accesses or bus arbitration to intervene between the trans-
fers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does not
affect completion of the line transfer, but the bus controller registers and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst bus
cycle and during the three long-word bus cycles of a burst-inhibited line transfer.

The address placed on the address bus by the processor for line bus cycle does not neces-
sarily point to the most significant byte of each long word because A1 and A0 are copied
from the original operand address supplied to the memory unit by the integer unit for line
reads. These two bits are also unchanged for the three long-word bus cycles of a burst-
inhibited line transfer. The selected device should ignore A1 and A0 for long-word and line
read transfers.

The address of an instruction fetch will always be aligned to a long-word boundary
($xxxxxxx0, $xxxxxxx4, $xxxxxxx8, or $xxxxxxxC). This is unlike the MC68040 in which the
prefetches occur on half-line boundaries. Therefore, compilers should attempt to locate
branch targets on long-word boundaries to minimize branch stalls. For example, if the target
of a branch is an instruction that starts at $1000000E, the following burst sequence will occur
upon a cache miss: $1000000C, $10000000, $10000004, then $10000008. Figure 7-14 and
Figure 7-15 illustrate a flowchart and functional timing diagram for a line read bus transfer.

Clock 1 (C1)
The line read cycle starts in C1. During C1, the processor places valid values on the ad-
dress bus and transfer attributes. For user and supervisor mode accesses that are trans-
lated by the corresponding memory unit, the UPAx signals are driven with the values from
the matching U1 and U0 bits. The TTx and TMx signals identify the specific access type.
The R/W signal is driven high for a read cycle, and the size signals (SIZx) indicate line
size. CIOUT is asserted for a MOVE16 operand read if the access is identified as non-
cachable. Refer to

Section 4 Memory Management Unit

 for information on the
MC68060 and MC68LC060 memory units and

Appendix B MC68EC060

 for information
on the MC68EC060 memory unit.
The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not already
asserted from a previous bus cycle, TIP is also asserted at this time to indicate that a bus
cycle is active.

Clock 2 (C2)
During C2, the processor negates TS. The selected device uses R/W and SIZx to place
the data on the data bus. (The first transfer must supply the long word at the correspond-
ing long-word boundary.) Concurrently, the selected device asserts TA and either negates
TBI to indicate it can or asserts TBI to indicate it cannot support a burst transfer.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins sam-
pling termination signals such as TA after a user-programmed number of BCLK rising

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-19

asserted. The registered data and the value of TCI are then passed to the appropriate
memory unit.
If TBI was negated with the assertion of TA, the processor continues the cycle with C3.
Otherwise, if TBI was asserted, the line transfer is burst inhibited, and the processor reads
the remaining three long words using long-word read bus cycles. The processor incre-
ments A3 and A2 for each read, and the new address is placed on the address bus for
each bus cycle. Refer to 7.7.1 Byte, Word, and Long-Word Read Transfer Cycles for
information on long-word reads. If no wait states are generated, a burst-inhibited line read
completes in eight clocks instead of the five required for a burst read.

Clock 3 (C3)
The processor holds the address and transfer attribute signals constant during C3 if CLA
is negated. The selected device must either increment A3 and A2 to reference the next
long word to transfer, place the data on the data bus, and assert TA, or alteratively assert
the CLA input to request the processor to increment A3 and A2. Refer to 7.7.7 Using CLA
to Increment A3 and A2 for details on CLA operation.
As in the description of C2, using acknowledge termination ignore state capability, the pro-
cessor ignores any termination signal, such as TA, until a user-programmable number of
BCLK edges has expired. And, as in the description in C2, SAS indicates the first BCLK
rising edge in which acknowledge termination signals become significant. If this mode is
disabled, SAS stays asserted in C3 to indicate that the processor will sample TA immedi-
ately. Refer to 7.14.1 Acknowledge Termination Ignore State Capability for details on
this mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA and registers the current value on the data bus at the end
of C3. If TA is asserted, the transfer terminates and the second long word of data is
passed to the appropriate memory unit. If TA is not recognized asserted at the end of C3,
the processor ignores the latched data and inserts wait states instead of terminating the
transfer. The processor continues to sample TA on successive rising edges of BCLK until
it is recognized asserted. The registered data is then passed to the appropriate memory
unit.

Clock 4 (C4)
This clock is identical to C3 except that once TA is recognized asserted, the registered
value corresponds to the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once TA is recognized, the registered value cor-
responds to the fourth long word of data for the burst. After the processor recognizes the
last TA assertion and terminates the line read bus cycle, TIP remains asserted if the pro-
cessor is ready to begin another bus cycle. Otherwise, the processor negates TIP during
the next clock.
Figure 7-16 and Figure 7-17 illustrate a flowchart and functional timing diagram for a
burst-inhibited line read bus cycle.

Bus Operation

7-44 M68060 USER’S MANUAL MOTOROLA

Figure 7-35 illustrates a flowchart for exiting the LPSTOP mode, and Figure 7-36 illustrates
the bus activity when exiting the LPSTOP mode, assuming that an interrupt is used to
awaken the processor and that the bus is initially three-stated.

Note that the acknowledge termination ignore state capability is applicable to the LPSTOP
broadcast cycle. If enabled, TA, TEA, and TRA are ignored for a user-programmed number
of BCLK cycles.

Figure 7-35. Exiting LPSTOP Mode Flowchart

1) PERFORM INTERNAL WAKE-UP
2) BEGIN EXCEPTION PROCESSING
3) DRIVE PST4–PST0 = $18 (EXCEPTION
 PROCESSING)

1) BEGIN TO OSCILLATE CLK FOR AT LEAST
 8 CLKS PLUS 2 BCLKS
2) TEMPORARILY CEASE ALL ALTERNATE
 MASTER ACTIVITY
3) NEGATE BB, TRA, TEA, TA, CLA, BGR, BG,
 SNOOP, AVEC, MDIS, CDIS, TCI, AND TBI.
4) ASSERT RSTI OR ASSERT IPL2–IPL0 TO
 GREATER THAN INTERRUPT MASK LEVEL

INTERRUPT

1) ASSERT BG AFTER PST4–PST0 = $18
2) CONTINUE ALTERNATE MASTER
 ACTIVITY AS NECESSARY

1) RESPOND TO INTERRUPT ACKNOWLEDGE
 BUS CYCLE AS APPROPRIATE
2) PERFORM NORMAL READ/WRITE TO
 MEMORY AS REQUESTED BY PROCESSOR

1) PERFORM INTERRUPT
 ACKNOWLEDGE CYCLE TO
 GET VECTOR NUMBER
2) PLACE STACK FRAME ON
 SYSTEM STACK

1) FETCH INITIAL SYSTEM STACK
 POINTER FROM VECTOR
 TABLE

RESET

1) FETCH PROGRAM COUNTER FROM
 VECTOR TABLE
2) PREFETCH INSTRUCTIONS OF APPRO-
 PRIATE EXCEPTION HANDLER
3) EXECUTE FIRST INSTRUCTION OF APPRO-
 PRIATE EXCEPTION HANDLER

PROCESSOR SYSTEM

Bus Operation

7-48 M68060 USER’S MANUAL MOTOROLA

implemented with an external device that latches the write data when a bus error terminates
a write cycle.

7.9.2 Retry Operation
When an external device asserts both the TA and TEA signals during a bus cycle in the
MC68040 acknowledge termination mode or if an external device asserts TRA with TEA
negated during a bus cycle in the native-MC68060 acknowledge termination mode, the pro-
cessor enters the retry bus operation sequence. The processor terminates the bus cycle and
immediately retries the bus cycle using the same access information (address and transfer
attributes). However, if the bus cycle was a cache push operation and the bus is arbitrated
away from the MC68060 before the retry operation with a snoop access during the arbitra-
tion which invalidates the cache push, the processor does not initiate a retry operation. Fig-
ure 7-39 illustrates a functional timing diagram for a retry of a read bus transfer.

Figure 7-37. Word Write Access Bus Cycle Terminated with TEA Timing

C1 C2

BCLK

WORD

SIZ1

MISCELLANEOUS
ATTRIBUTES

TS

SAS

TIP

TA

R/W

SIZ0

WRITE CYCLE

C1 C2

WRITE STACK

TEA

A31–A0

D31–D0 PRE
DRIVE

PRE
DRIVE

Bus Operation

7-58 M68060 USER’S MANUAL MOTOROLA

The snoop state is similar to the AM-explicit own state in that the MC68060 does not have
ownership of the bus. The snoop state differs from the AM-explicit own state in that the
MC68060 is in the process of performing an internal snoop operation because the processor
has detected that TS and SNOOP are asserted and TT1 = 0. The snoop state always returns
to the AM-explicit own state.

The implicit ownership state indicates that the MC68060 owns the bus because BG is
asserted to it. The processor, however, is not ready to begin a bus cycle, and it keeps BB
negated and the bus three-stated until an internal bus request occurs.

The MC68060 explicitly owns the bus when the bus is granted to it (BG asserted) and at
least one bus cycle has initiated. The processor asserts BB during this state to indicate the
processor has explicit ownership of the bus. Until BG is negated, the processor retains
explicit ownership of the bus whether or not active bus cycles are being executed. When the
processor is ready to relinquish the bus, it goes through the end tenure state to indicate to
all alternate masters that it is relinquishing the bus. During the end tenure state, BB goes
from being actively asserted to being actively negated for one CLK cycle and then three-
stated. While in this state, RSTI is asserted and the processor proceeds to the end tenure
state to inform other bus masters it is relinquishing the bus.

7.11.2 MC68060-Arbitration Protocol (BTT Protocol)
The MC68060-arbitration protocol is different from the MC68040-arbitration protocol in that
BTT is used instead of BB. BTT indicates that the MC68060 has completed a bus tenure
and the bus can now be used by another master. When using the MC68060-arbitration pro-
tocol, BB must be pulled high via a separate pullup resistor since the processor drives BB
during bus tenure times. This pullup resistor must be used solely for BB.

Arbitration within the MC68060 bus interface controller is based on current bus ownership
and the concept that a bus cycle is an atomic entity which cannot be split, though it may be
prematurely terminated. If the bus is currently owned by the processor, it can be owned by
another master only after the completion of the final bus cycle when the processor has
asserted BTT.

If the bus is not currently owned by the processor, it asserts its BR signal as soon as it needs
the bus. Bus mastership is assumed as soon as the assertion of BG is received from the bus
arbiter and the one BCLK period assertion of the bused BTT is detected (or alternately, the
transition and negation of BB is detected at a rising BCLK edge), indicating the previous
master has terminated its tenure and relinquished the bus. If the MC68060 still has a need
to use the bus when BG is received, it assumes bus mastership, asserts TS, and starts a
bus cycle. Note the MC68060 negates its BR signal if, due to internal state, it no longer
needs to use the bus at that moment in time. It negates its BR signal at the same time it
asserts the TS signal if the bus is only needed for one bus cycle.

BTT is connected to all masters in a system to give notice of the termination of bus tenure
by the MC68060 processor. BTT is asserted by the MC68060 after it has lost right of own-
ership to the bus by the negation of BG and is ready to end usage of the bus. After the final
termination acknowledgment of the final bus cycle when the MC68060 has lost bus owner-
ship, the processor asserts BTT for a one BCLK period, negates BTT for a one BCLK period,

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-65

The snoop state is similar to the AM-explicit own state in that the MC68060 does not have
ownership of the bus. The snoop state differs from the AM-explicit own state in that the
MC68060 is in the process of performing an internal snoop operation because the processor
has detected that TS and SNOOP are asserted and TT1 = 0. The snoop state always returns
to the AM-explicit own state. The implicit ownership state indicates that the MC68060 owns
the bus because BG is asserted to it. The processor, however, is not ready to begin a bus
cycle, and keeps BB negated and the bus three-stated until an internal bus request occurs.

The MC68060 explicitly owns the bus when the bus is granted to it (BG asserted) and it has
initiated at least one bus cycle. Until BG is negated, the processor retains explicit ownership
of the bus whether or not active bus cycles are being executed. When the processor is ready
to relinquish the bus, it goes through the end tenure state to indicate to all alternate masters
that it is relinquishing the bus. During the end tenure state, BTT is asserted for one BCLK
and is actively negated for the next BCLK prior to three-stating. While in this state, if RSTI
is asserted, the processor proceeds to the end tenure state to inform other bus masters it is
relinquishing the bus.

All alternate masters that reside in a system and use the MC68060-arbitration protocol must
provide the same functionality as the MC68060 for proper system operation.

7.11.3 External Arbiter Considerations
The bus arbitration state diagrams for the MC68040-arbitration protocol and MC68060-arbi-
tration protocol may be used to approximate the high level behavior of the processor. In
either case, it is assumed that all TS signals in a system are tied together, all BB signals in
a system are tied together and to a pullup resistor (MC68040-arbitration protocol), or all BTT
signals in a system are tied together and to a pullup resistor (MC68060-arbitration protocol).
Furthermore, unused BB or BTT pins must have separate pullup resistors.

If an alternate master loses bus ownership when it is in its implicit ownership state, the pro-
cessor checks TS. If TS is sampled asserted, the processor interprets this as the alternate
master transitioning to its explicit ownership state, and it does not take over bus ownership.
This operation is different from that of the MC68040, in that external arbiters are required to
check for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal.

When using the MC68040-arbitration protocol, as with the TS signal, the BB of all alternate
bus masters must be tied together to the processor’s BB signal. Also, when an alternate
master becomes bus master, it must assert BB if it initiates a bus cycle with the TS asserted.

The external arbiter design needs to include the function of BR. For example, in certain
cases associated with conditional branches, the MC68060 can assert BR to request the bus
from an alternate bus master, then negate BR without using the bus, regardless of whether
or not the external arbiter eventually asserts BG. This situation happens when the MC68060
attempts to prefetch an instruction for a conditional branch. To achieve maximum perfor-
mance, the processor may prefetch the instructions of the forward path for a conditional
branch. If the branch prediction is incorrect and if the conditional branch results in a branch-
not-taken, the previously issued branch-taken prefetch is then terminated since the prefetch

Exception Processing

8-10

M68060 USER’S MANUAL

MOTOROLA

Exception processing for illegal and unimplemented instructions is similar to that for instruc-
tion traps. When the processor has identified an illegal or unimplemented instruction, it ini-
tiates exception processing instead of attempting to execute the instruction. The processor
copies the SR, enters the supervisor mode, and clears T-bit, disabling further tracing. The
processor generates the vector number according to the exception type. The illegal or unim-
plemented instruction vector offset, current PC, and copy of the SR are saved on the super-
visor stack. Instruction execution resumes at the address contained in the exception vector.

8.2.5 Privilege Violation Exception

To provide system security, certain instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR FSAVE MOVEC PLPA

CINV MOVE from SR MOVES RESET

CPUSH MOVE to SR ORI to SR RTE

EORI to SR MOVE USP PFLUSH STOP

FRESTORE LPSTOP

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before executing
the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters the supervi-
sor mode, and clears the T-bit. The processor generates vector number 8, saves the privi-
lege violation vector offset, the current PC value, and the internal copy of the SR on the
supervisor stack. The saved value of the PC is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes after the initial
instruction is fetched from the address in the privilege violation exception vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an instruction-by-instruction
tracing capability. In the trace mode, an instruction generates a trace exception after the
instruction completes execution, allowing a debugging program to monitor execution of a
program.

In general terms, a trace exception is an extension to the function of any traced instruction.
The execution of a traced instruction is not complete until trace exception processing is com-
plete. If an instruction does not complete due to an access error or address error exception,
trace exception processing is deferred until after execution of the suspended instruction is
resumed. If an interrupt is pending at the completion of an instruction, trace exception pro-
cessing occurs before interrupt exception processing starts. If an instruction forces an
exception as part of its normal execution, the forced exception processing occurs before the
trace exception is processed.

The T-bit in the supervisor portion of the SR controls tracing. The state of the T-bit when an
instruction begins execution determines whether the instruction generates a trace exception
after the instruction completes.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-23

 "139 (BC_2, *, internal, X), " &
 --num cell port function safe ccell dsval rslt
 "140 (BC_4, CLK, input, X), " &
 "141 (BC_1, CLKEN, input, X), " &
 "142 (BC_1, IPL(0), input, X), " &
 "143 (BC_1, IPL(1), input, X), " &
 "144 (BC_1, IPL(2), input, X), " &
 "145 (BC_1, RSTI, input, X), " &
 "146 (BC_1, CDIS, input, X), " &
 "147 (BC_1, MDIS, input, X), " &
 "148 (BC_2, BS(3), output3, X, 150, 0, Z), " &
 "149 (BC_2, BS(2), output3, X, 150, 0, Z), " &
 "150 (BC_2, *, control, 0), " & -- bs[3:0]
 "151 (BC_2, BS(1), output3, X, 150, 0, Z), " &
 "152 (BC_2, BS(0), output3, X, 150, 0, Z), " &
 "153 (BC_2, *, control, 0), " & -- ipend,rsto
 "154 (BC_2, RSTO, output3, X, 153, 0, Z), " &
 "155 (BC_2, IPEND, output3, X, 153, 0, Z), " &
 "156 (BC_2, CIOUT, output3, X, 157, 0, Z), " &
 "157 (BC_2, *, control, 0), " & -- upa[1:0],ciout
 "158 (BC_2, UPA(0), output3, X, 157, 0, Z), " &
 "159 (BC_2, UPA(1), output3, X, 157, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "160 (BC_2, *, internal, X), " &
 "161 (BC_2, TT0, output3, X, 164, 0, Z), " &
 "162 (BC_1, TT1, input, X), " &
 "163 (BC_2, TT1, output3, X, 164, 0, Z), " &
 "164 (BC_2, *, control, 0), " & -- a[11:10],TT[1:0]
 "165 (BC_1, A(10), input, X), " &
 "166 (BC_2, A(10), output3, X, 164, 0, Z), " &
 "167 (BC_1, A(11), input, X), " &
 "168 (BC_2, A(11), output3, X, 164, 0, Z), " &
 "169 (BC_1, A(12), input, X), " &
 "170 (BC_2, A(12), output3, X, 173, 0, Z), " &
 "171 (BC_1, A(13), input, X), " &
 "172 (BC_2, A(13), output3, X, 173, 0, Z), " &
 "173 (BC_2, *, control, 0), " & -- a[15:12]
 "174 (BC_1, A(14), input, X), " &
 "175 (BC_2, A(14), output3, X, 173, 0, Z), " &
 "176 (BC_1, A(15), input, X), " &
 "177 (BC_2, A(15), output3, X, 173, 0, Z), " &
 "178 (BC_1, A(16), input, X), " &
 "179 (BC_2, A(16), output3, X, 182, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "180 (BC_1, A(17), input, X), " &
 "181 (BC_2, A(17), output3, X, 182, 0, Z), " &
 "182 (BC_2, *, control, 0), " & -- a[19:16]
 "183 (BC_1, A(18), input, X), " &
 "184 (BC_2, A(18), output3, X, 182, 0, Z), " &
 "185 (BC_1, A(19), input, X), " &
 "186 (BC_2, A(19), output3, X, 182, 0, Z), " &
 "187 (BC_1, A(20), input, X), " &
 "188 (BC_2, A(20), output3, X, 191, 0, Z), " &
 "189 (BC_1, A(21), input, X), " &
 "190 (BC_2, A(21), output3, X, 191, 0, Z), " &

MOTOROLA

M68060 USER’S MANUAL

10-1

SECTION 10
INSTRUCTION EXECUTION TIMING

This section details the MC68060 instruction execution times in terms of processor clock
cycles and the superscalar architecture. The number of operand cycles for each instruction
is also included, enclosed in parentheses following the number of clock cycles. Timing
entries are presented as:

C(r/w)

where:

C = The number of processor clock cycles, including all applicable operand fetches and
stores, plus all internal CPU cycles required to complete the instruction execution.

r/w = The number of operand reads (r) and writes (w). A read-modify-write cycle is
denoted as (1/1).

10.1 SUPERSCALAR OPERAND EXECUTION PIPELINES

The superscalar architecture of the MC68060 processor consists of three structures within
the operand execution pipeline (OEP). The components include a primary OEP (pOEP), a
secondary OEP (sOEP) plus a monolithic register file containing the general-purpose regis-
ters, Dn and An. As instructions are gated out of the instruction fetch pipeline’s instruction
buffer, consecutive operation words (if available) are loaded into the pOEP and sOEP. A
superscalar instruction dispatch algorithm must then determine if the instruction-pair may
continue its OEP execution simultaneously.

Each OEP consists of two compute engines: an adder structure for calculating operand vir-
tual addresses (the address generation unit (AGU)) and an integer execute engine for per-
forming instruction operations (the integer execute engine (IEE)).

Instruction Execution Timing

10-12

M68060 USER’S MANUAL

MOTOROLA

The following instructions perform this pipeline synchronization:

andi_to_sr
bkpt
cas
cinv
cpush
eori_to_sr
halt
lpstop
move_to_sr
movec
nop
ori_to_sr
pflush
plpa
reset
rte
stop
tas

7. Certain instructions have a variable execution time based on input operands, cache
state, etc. For these instructions, the execution time listed represents the maximum
value. These times are listed as: <= k(r/w) where k is the maximum time.

10.3 CACHE AND ATC PERFORMANCE DEGRADATION TIMES

This section defines degradation times to MC68060 processor performance for cache and
ATC miss conditions (as detailed in

10.2 Timing Assumptions

, the performance numbers
in

10.1.5 Dispatch Test 5: No Register Conflicts on sOEP.AGU Resources

 and

10.1.6
Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources

assume internal cache
hits for all memory accesses). If a cache miss is encountered, the appropriate delay times
defined in this section are to be used with the instruction times defined in

10.1.5 Dispatch
Test 5: No Register Conflicts on sOEP.AGU Resources

 and

10.1.6 Dispatch Test 6: No
Register Conflicts on sOEP.IEE Resources

 to determine MC68060 execution time.

10.3.1 Instruction ATC Miss

Assumptions:

• A single, “C-index” level, normal table search (the only U-bit update possible is for the
page descriptor itself).

• Given a memory response time of “w-x-y-z” to the bus interface of the MC68060.

Instruction ATC Miss = 10+3*w(3/0), if U-bit of descriptor is already set.

Instruction ATC Miss = 18+5*w(4/1), if U-bit of descriptor must be set by the MC68060.

Applications Information

11-18 M68060 USER’S MANUAL MOTOROLA

Table 11-1. With Heat Sink, No Air Flow
Air Flow
Velocity

PD TJ θJC MAX TA – TC TC TA

0 LFM 2.8 W 110 °C 2.5 °C/W 35 °C 103 °C 68 °C
0 LFM 3.1 W 110 °C 2.5 °C/W 38 °C 102 °C 64 °C
0 LFM 3.5 W 110 °C 2.5 °C/W 40 °C 101 °C 61 °C
0 LFM 3.8 W 110 °C 2.5 °C/W 43 °C 100 °C 57 °C
0 LFM 4.2 W 110 °C 2.5 °C/W 45 °C 100 °C 54 °C
0 LFM 4.5 W 110 °C 2.5 °C/W 48 °C 99 °C 51 °C
0 LFM 4.9 W 110 °C 2.5 °C/W 50 °C 98 °C 48 °C
0 LFM 5.2 W 110 °C 2.5 °C/W 53 °C 97 °C 44 °C

Table 11-2. With Heat Sink, with Air Flow
Air Flow
Velocity

PD TJ θJC MAX θCA θJA TC TA

200 LFM 2.8 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 103 °C 91 °C
200 LFM 3.1 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 102 °C 89 °C
200 LFM 3.5 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 101 °C 87 °C
200 LFM 3.8 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 100 °C 84 °C
200 LFM 4.2 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 100 °C 82 °C
200 LFM 4.5 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 99 °C 80 °C
200 LFM 4.9 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 98 °C 77 °C
200 LFM 5.2 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 97 °C 75 °C
400 LFM 2.8 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 103 °C 97 °C
400 LFM 3.1 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 102 °C 95 °C
400 LFM 3.5 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 101 °C 94 °C
400 LFM 3.8 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 100 °C 92 °C
400 LFM 4.2 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 100 °C 90 °C
400 LFM 4.5 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 99 °C 89 °C
400 LFM 4.9 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 98 °C 87 °C
400 LFM 5.2 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 97 °C 85 °C
600 LFM 2.8 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 103 °C 99 °C
600 LFM 3.1 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 102 °C 98 °C
600 LFM 3.5 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 101 °C 96 °C
600 LFM 3.8 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 100 °C 95 °C
600 LFM 4.2 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 100 °C 93 °C
600 LFM 4.5 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 99 °C 92 °C
600 LFM 4.9 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 98 °C 91 °C
600 LFM 5.2 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 97 °C 89 °C

MC68060 Software Package

C-14

M68060 USER’S MANUAL

MOTOROLA

other rounding modes. Transcendental instructions have an error bound of less than 0.6 unit
in the last place of double precision. The error bound for decimal conversions is 0.97 unit in
the destination precision for the round-to-nearest mode and 1.47 units in the last digit of the
destination precision for the other rounding modes.

C.3.2 Module 3: Full Floating-Point Kernel

The full floating-point kernel includes the following exception handlers:

1. Floating-point unimplemented instruction handler

2. Floating-point unimplemented data type handler

3. Unimplemented effective address handler

4. Floating-point arithmetic exception handlers

When the full floating-point kernel is integrated into the system, the entire MC68881 floating-
point coprocessor instruction set object-code compatibility is attained, and IEEE-754 trap
reporting compliance is achieved. This module stands on its own and is ideal for systems
whose applications were written with the full MC68881 instruction set in mind.

C.3.2.1 FULL FLOATING-POINT KERNEL MODULE ENTRY POINTS.

 The _fpsp_fline,
_fpsp_unsupp and _fpsp_effadd are entry points supplied for the floating-point unimple-
mented instruction, floating-point unimplemented data type and unimplemented effective
address handlers respectively. The _fpsp_snan, _fpsp_operr, _fpsp_ovfl, _fpsp_unfl,
_fpsp_dz, _fpsp_inex entry points are supplied as the floating-point arithmetic exception
handlers. These entry points are implemented such that the appropriate vector table entries
typically point directly to these functions. If the system chooses to perform certain system
functions prior to entering these entry points, the system can do so with the condition that
the system stack pointer must point to the exception stack frame at the time of the function
entry. Figure C-12 illustrates the relationship of the module to the vector table and system
software envelope.

C.3.2.2 FULL FLOATING-POINT KERNEL MODULE CALL-OUTS.

The full floating-point
kernel requires the following call-outs: _real_fline, _real_fpu_disabled, _real_trace,
_real_trap, _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz,
_real_inex, _fpsp_done. In addition,

C.4 Operating System Dependencies

 discusses the
_real_access call-out and other call-outs that are common to the unimplemented integer
instruction exception module.

C.3.2.2.1 The F-Line Exception Call-Outs.

When the _fpsp_fline function is entered, it
checks the stack frame format and determines whether this is an unimplemented floating-
point instruction, FPU disabled or F-line illegal exception. If it is determined that the FPU is
disabled, the call-out _real_fpu_disabled is taken. It is up to the system software to either
emulate the instruction using integer instructions or simply turn on the FPU before returning
to restart the instruction. If the instruction is not recognized as an MC68881 instruction, the
call-out _real_fline is taken. The system software is responsible for taking the appropriate
action. If neither the FPU disabled or F-line illegal exception cases is true, then the
M68060SP emulates the instruction.

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-7

FABS
FSFABS, FDFABS
FACOS
FADD
FSADD, FDADD
FASIN
FATAN
FATANH
FBcc
FCMP
FCOS
FCOSH
FDBcc
FDIV
FSDIV, FDDIV
FETOX
FETOXM1
FGETEXP
FGETMAN
FINT
FINTRZ
FLOG10
FLOG2
FLOGN
FLOGNP1
FMOD
FMOVE
FSMOVE,FDMOVE
FMOVECR
FMOVEM
FMUL
FSMUL,FDMUL
FNEG
FSNEG,FDNEG
FNOP
FREM
FRESTORE
FSAVE
FSCALE
FScc
FSGLDIV
FSGLMUL
FSIN
FSINCOS
FSINH
FSQRT
FSSQRT,FDSQRT
FSUB
FSSUB,FDSUB
FTAN
FTANH
FTENTOX
FTRAPcc
FTST
FTWOTOX

Floating-Point Absolute Value
Floating-Point Absolute Value (Single/Double Precision)
Floating-Point Arc Cosine
Floating-Point Add
Floating-Point Add (Single/Double Precision)
Floating-Point Arc Sine
Floating-Point Arc Tangent
Floating-Point Hyperbolic Arc Tangent
Floating-Point Branch
Floating-Point Compare
Floating-Point Cosine
Floating-Point Hyperbolic Cosine
Floating-Point Decrement and Branch
Floating-Point Divide
Floating-Point Divide (Single/Double Precision)
Floating-Point e

x

Floating-Point e

x

–1
Floating-Point Get Exponent
Floating-Point Get Mantissa
Floating-Point Integer Part
Floating-Point Integer Part, Round-to-Zero
Floating-Point Log10
Floating-Point Log2
Floating-Point Loge
Floating-Point Loge

(x+1)

Floating-Point Modulo Remainder
Move Floating-Point Register
Move Floating-Point Register (Single/Double Precision)
Move Constant ROM
Move Multiple Floating-Point Registers
Floating-Point Multiply
Floating-Point Multiply (Single/Double Precision)
Floating-Point Negate
Floating-Point Negate (Single/Double Precision)
Floating-Point No Operation
IEEE Remainder
Restore Floating-Point Internal State
Save Floating-Point Internal State
Floating-Point Scale Exponent
Floating-Point Set According to Condition
Single-Precision Divide
Single-Precision Multiply
Sine
Simultaneous Sine and Cosine
Hyperbolic Sine
Floating-Point Square Root
Floating-Point Square Root (Single/Double Precision)
Floating-Point Subtract
Floating-Point Subtract (Single/Double Precision)
Tangent
Hyperbolic Tangent
Floating-Point 10

x

Floating-Point Trap on Condition
Floating-Point Test
Floating-Point 2

x

ILLEGAL Take Illegal Instruction Trap

Table D-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

MC68060 Instructions

D-24 M68060 USER’S MANUAL MOTOROLA

PLPA Test a Logical Address PLPA
(MC68060, MC68LC060)

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 1 R/W 0 0 1 ADDRESS REGISTER

