

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, FIFO, I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	144K x 8
Voltage - Supply (Vcc/Vdd)	1.43V ~ 1.58V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LBGA
Supplier Device Package	P-LBGA-208-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-tc1115-l100eb-bb

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TC1115

Advance Information

General Device Information

2 General Device Information

2.1 Block Diagram

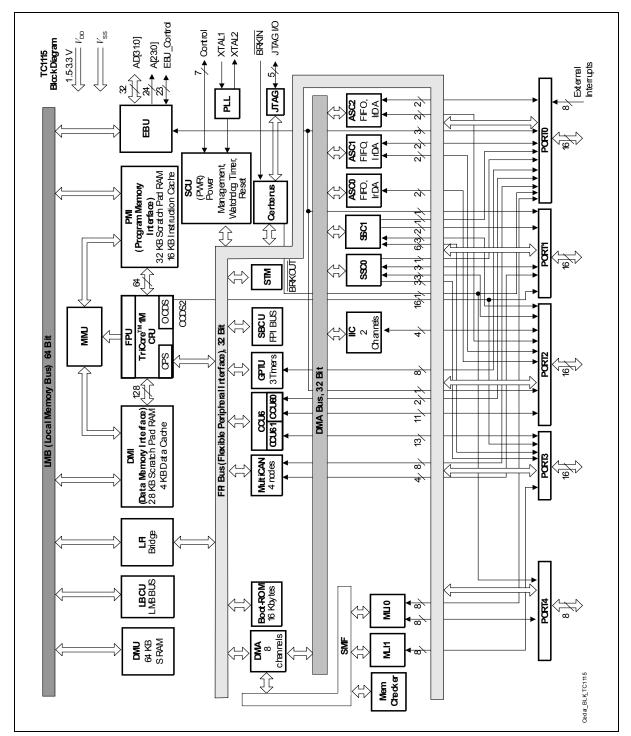


Figure 2-1 TC1115 Block Diagram

General Device Information

Table 2-1	Pin Definitions and Functions	(cont'd))
-----------	-------------------------------	----------	---

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions	
P1.7	B13	I	PUC	SWCFG7	Software configuration 7
		0		OCDSA_7	OCDS L2 Debug Line A7
P1.8	A13	I	PUC	SWCFG8	Software configuration 8
		0		OCDSA_8	OCDS L2 Debug Line A8
P1.9	A14	1	PUC	SWCFG9	Software configuration 9
		0		OCDSA_9	OCDS L2 Debug Line A9
P1.10	B14	1	PUC	SWCFG10	Software configuration 10
		0		OCDSA 10	OCDS L2 Debug Line A10
P1.11	C14	1	PUC	SWCFG11	Software configuration 11
		0		OCDSA_11	OCDS L2 Debug Line A1
		0		SLSO0_1	SSC0 Slave Select output 1
P1.12	F13	1	PUC	SWCFG12	Software configuration 12
		0		OCDSA_12	OCDS L2 Debug Line A12
		0		SLSO1_1	SSC1 Slave Select output 1
P1.13	E14	I	PUC	SWCFG13	Software configuration 13
		0		OCDSA_13	OCDS L2 Debug Line A13
		0		SLSO0_2	SSC0 Slave Select output 2
P1.14	D14	0	PUC	SLSO1_2	SSC1 Slave Select output 2
		1		SWCFG14	Software configuration 14
		0		OCDSA_14	OCDS L2 Debug Line A14
P1.15	F14	1	PUC	SLSI0	SSC0 Slave Select Input
		0		RMW	EBU Read Modify Write
		I		SWCFG15	Software configuration 15
		0		OCDSA_15	OCDS L2 Debug Line A15

General Device Information

Table 2-1 Pin Definitions and Functions (cont'd)

Symbol	Pin	In Out	PU/ PD ¹⁾	Functions	
P2		I/O		Port 2	
				which can be a	bit bi-directional general purpose I/O port alternatively used for ASC0/1/2, SSC0/1, EBU and SCU.
P2.0	P12	I/O O	PUC	RXD0 CSEMU	ASC0 receiver input/output line EBU Chip Select Output for Emulator Region
P2.1	P11	0	PUC	TXD0 TESTMODE	ASC0 transmitter output line Test Mode Select Input
P2.2	P13	I/O	PUC	MRST0	SSC0 master receive/slave transmit input/output
P2.3	P14	I/O	PUC	MTSR0	SSC0 master transmit/slave receive
P2.4	N15	I/O	PUC	SCLK0	SSC0 clock input/output line
P2.5	N14	0	PUC	COUT60_3	CCU60 compare channel 3 output
		I/O		MRST1A	SSC1 master receive/slave transmit
50.0			5.1.6		input/output A
P2.6	N12	I/O	PUC	CC60_0	CCU60 input/output of capture/
		I/O		MTSR1A	compare channel 0 SSC1 master transmit/slave receive
		"0		WITORIA	input/output A
P2.7	K16	0	PUC	COUT60_0	CCU60 output of capture/compare channel 0
		I/O		SCLK1A	SSC1 clock input/output line A
P2.8	J16	I/O	PUC	CC60_1	CCU60 input/output of capture/ compare channel 1
		I/O		RXD1A	ASC1 receiver input/output line A
P2.9	H16	0	PUC	COUT60_1	CCU60 output of capture/compare channel 1
		0		TXD1A	ASC1 transmitter output line A
P2.10	L13	I/O	PUC	CC60_2	CCU60 input/output of capture/
					compare channel 2
	0.10	1/0		RXD2A	ASC2 receiver input/output line A
P2.11	G16	0	PUC	COUT60_2	CCU60 output of capture/compare channel 2
		0		TXD2A	ASC2 transmitter output line A
P2.12	K15	I/O		SDA0	IIC Serial Data line 0
		1		CTRAP0	CCU60 trap input
_		0		SLSO0_3	SSC0 Slave Select output 3

Functional Description

3.2 Address Map

Table 3-1 defines the specific segment oriented address blocks of the TC1115 with its address range, size, and PMI/DMI access view. **Table 3-2** shows the block address map of the Segment 15 which includes on-chip peripheral units and ports.

Seg- ment	Address Range	Size	Description	DMI Acc.	PMI Acc.	
0 – 7	0000 0000 _H – 7FFF FFFF _H	2 GB	MMU Space	via FPI	via FPI	с а
8	8000 0000 _H – 8FFF FFFF _H	256 MB	External Memory Space mapped from Segment 10	via LMB	via LMB	C h
9	9000 0000 _H – 9FDF FFFF _H	256 MB	Reserved	via FPI	via FPI	e d
10	A000 0000 _H – AFBF FFFF _H	252 MB	External Memory Space	via LMB	via LMB	n o
	AFC0 0000 _H – AFC0 FFFF _H	64 KB	DMU Space			n- C
	AFC1 0000 _H – AFFF FFFF _H	~4 MB	Reserved			a c h
11	B000 0000 _H – BFFF FFFF _H	256 MB	Reserved	via FPI	via FPI	e d
12	C000 0000 _H – C000 FFFF _H	64 KB	DMU	via LMB	via LMB	c a
	C001 0000 _H – CFFF FFFF _H	~ 256 MB	Reserved			c h e d

Table 3-1 TC1115 Block Address Map

Functional Description

3.7 Interrupt System

An interrupt request can be serviced by the CPU, which is called "Service Provider". Interrupt requests are referred to as "Service Requests" in this document.

Each peripheral in the TC1115 can generate service requests. Additionally, the Bus Control Unit, the Debug Unit, the DMA Controller and even the CPU itself can generate service requests to the Service Provider. As shown in **Figure 3-3**, each unit that can generate service requests is connected to one or multiple Service Request Nodes (SRN). Each SRN contains a Service Request Control Register mod_SRC, where "mod" is the identifier of the unit requesting service. The SRNs are connected to the Interrupt Control Unit (ICU) via the CPU Interrupt Arbitration Bus. The ICU arbitrates service requests for the CPU and administers the Interrupt Arbitration Bus.

Units that can generate service requests are:

- Asynchronous/Synchronous Serial Interfaces (ASC0, ASC1 and ASC2) with 4 SRNs each
- High-Speed Synchronous Serial Interfaces (SSC0 and SSC1) with 3 SRNs each
- Inter IC Interface (IIC) with 3 SRNs
- Micro Link Interface MLI0 with 4 SRNs and MLI1 with 2 SRNs
- · General Purpose Timer Unit (GPTU) with 8 SRNs
- Capture/Compare Unit (CCU60 and CCU61) with 4 SRNs each
- MultiCAN (CAN) with 16 SRNs
- External Interrupts with 4 SRNs
- Direct Memory Access Controller (DMA) with 4 SRNs
- DMA Bus with 1 SRN
- System Timer (STM) with 2 SRNs
- Bus Control Units (SBCU and LBCU) with 1 SRN each
- Central Processing Unit (CPU) with 4 SRNs
- Floating Point Unit (FPU) with 1 SRN
- Debug Unit (OCDS) with 1 SRN

The CPU can make service requests directly to itself (via the ICU). The CPU Service Request Nodes are activated through software.

Functional Description

- · Evaluation of the device address in slave mode
- · Bus access arbitration in multimaster mode

Features:

- · Extended buffer allows up to 4 send/receive data bytes to be stored
- Selectable baud rate generation
- Support of standard 100 kBaud and extended 400 kBaud data rates
- Operation in 7-bit addressing mode or 10-bit addressing mode
- · Flexible control via interrupt service routines or by polling
- Dynamic access to up to 2 physical IIC buses

Functional Description

3.12 MultiCAN

Figure 3-8 shows a global view of the functional blocks of the MultiCAN module.

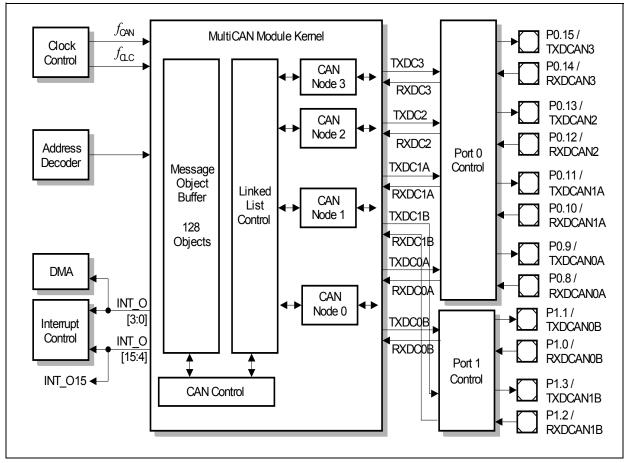


Figure 3-8 General Block Diagram of the MultiCAN Interface

The MultiCAN module contains 4 Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list.

A powerful, command driven list controller performs all list operations.

Functional Description

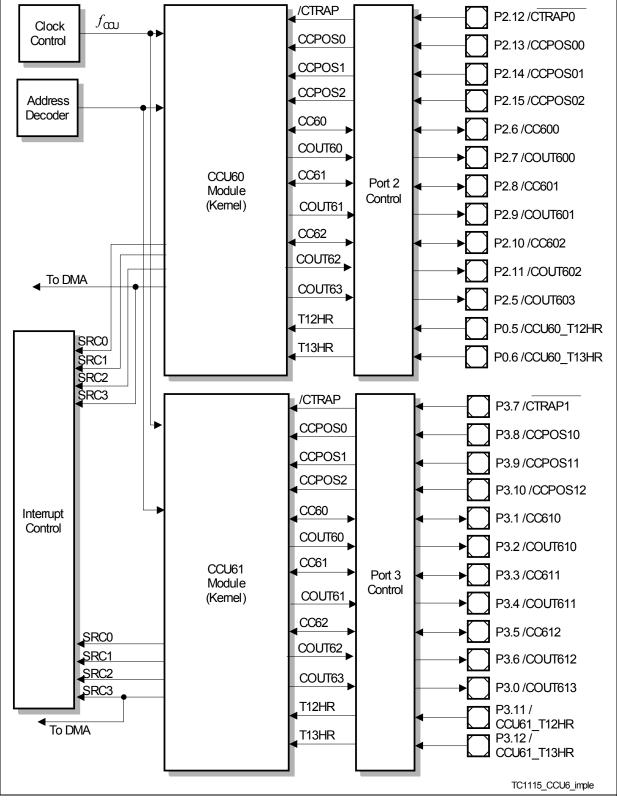


Figure 3-11 General Block Diagram of the CCU6 Interfaces

TC1115

Advance Information

Functional Description

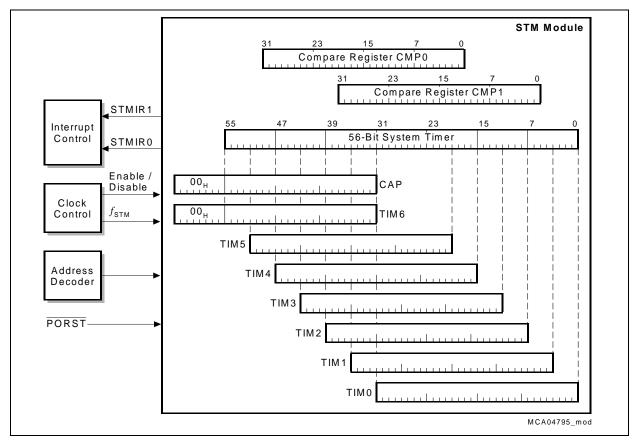


Figure 3-12 Block Diagram of the STM Module

Functional Description

3.17 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failure. The WDT helps to abort an accidental malfunction of the TC1115 in a user-specified time period. When enabled, the WDT will cause the TC1115 system to be reset if the WDT is not serviced within a user-programmable time period. The CPU must service the WDT within this time interval to prevent the WDT from causing a TC1115 system reset. Hence, routine service of the WDT confirms that the system is functioning properly.

In addition to this standard "Watchdog" function, the WDT incorporates the ENDINIT feature and monitors its modifications. A system-wide line is connected to the ENDINIT bit implemented in a WDT control register, serving as an additional write-protection for critical registers (besides supervisor mode protection). Registers protected via this line can be modified only when supervisor mode is active and bit ENDINIT = 0.

A further enhancement in the TC1115's Watchdog Timer is its reset prewarning operation. Instead of immediately resetting the device upon detection of an error, the WDT first issues a Non-Maskable Interrupt (NMI) to the CPU before finally resetting the device at a specified time period later. This gives the CPU a chance to save system state to memory for later examination of the cause of the malfunction, thus providing an important aid in debugging.

Features:

- 16-bit Watchdog counter
- Selectable input frequency: $f_{SYS}/256 \text{ or } f_{SYS}/16384$
- 16-bit user-definable reload value for normal Watchdog operation, fixed reload value for time-out and prewarning modes
- Incorporation of the ENDINIT bit and monitoring of its modifications
- Sophisticated password access mechanism with fixed and user-definable password fields
- Proper access always requires two write accesses. The time between the two accesses is monitored by the WDT.
- Access Error Detection: Invalid password (during first access) or invalid guard bits (during second access) trigger the Watchdog reset generation.
- Overflow Error Detection: An overflow of the counter triggers the Watchdog reset generation.
- Watchdog function can be disabled; access protection and ENDINIT monitor function remain enabled.
- Double Reset Detection: If a Watchdog induced reset occurs twice without a proper access to its control register in between, a severe system malfunction is assumed and the TC1115 is held in reset until a power-on reset. This prevents the device from being periodically reset if, for instance, connection to the external memory has been lost such that even system initialization could not be performed.

Functional Description

3.19 Boot Options

The TC1115 booting schemes provides a number of different boot options for the start of code execution. Table 3-3 shows the boot options available in the TC1115.

Table 3-3Boot Selections

BRKIN ¹⁾	TM ¹⁾	HWCFG [2:0]	Type of Boot	PC Start Value (User Entry)
1	1	000	Bootstrap Loader Serial boot from ASC to PMI scratch pad, run loaded program	DFFF FFFC _H ²⁾ (D400 0000 _H)
		001	Bootstrap Loader Serial boot from CAN to PMI scratch pad, run loaded program	
		010	Bootstrap Loader Serial boot from SSC to PMI scratch pad, run loaded program	
		011	External memory, EBU as master	DFFF FFFC _H ²⁾ (A000 0000 _H)
		100	External memory, EBU as slave	DFFF FFFC _H ²⁾ (A000 0000 _H)
		101	Reserved (STOP)	
		110	PMI scratch pad	D400 0000 _H
		111	Reserved (STOP)	DFFF FFFC _H ²⁾
1	0	000-111	Reserved (STOP)	DFFF FFFC _H ²⁾
0	1	000	Tristate chip	
		001	Go to external emulator space	DFFF FFFC _H ²⁾ (DE00 0000 _H)
		010	Reserved (STOP)	
		011	OSC and PLL Bypass	
		100-111	Reserved (STOP)	DFFFFFFC _H ²⁾
0	0	000-111	Reserved (STOP)	DFFFFFFC _H ²⁾

¹⁾ This input signal is active low.

²⁾ This is the BootROM entry address; the start address of user program in parentheses.

Functional Description

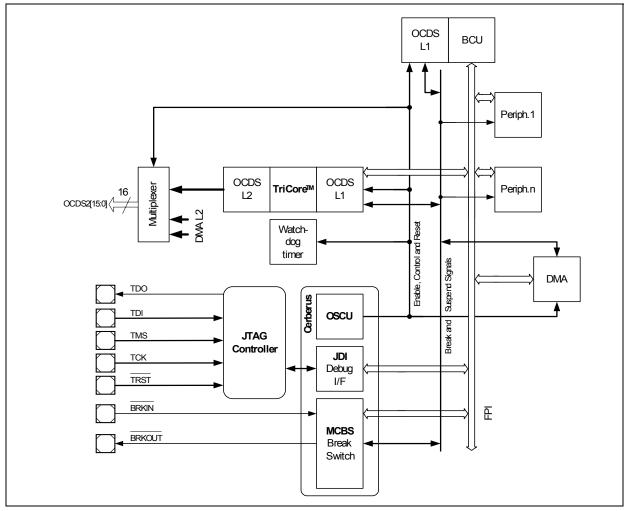


Figure 3-13 OCDS Support Basic Block Diagram

Functional Description

Table 3-5Load Capacitors Select (cont'd)

Fundamental Mode Crystal Frequency (approx., MHz)	Load Capacitors C1, C2 (pF)
20	10
24	10

A block capacitor between $V_{\rm DDOSC3}$ and $V_{\rm SSOSC},~V_{\rm DDOSC}$ and $V_{\rm SSOSC}$ is recommended, too.

Electrical Parameters

4.2.3 IIC Characteristics

Each IIC Pin is an open drain output pin with different characteristics than other pins. The related characteristics are given in the following table.

Parameter	Syml	bol	Limit Valu	es	Unit	Test	
			min. max.			Conditions	
Output low voltage	V _{OL}	CC	_	0.4 0.6	V	3 mA sink current 6 mA sink current	
Input high voltage ¹⁾	V _{IH}	SR	0.7V _{DDP}	V _{DDP} +0.5	V	-	
Input low voltage ¹⁾	V _{IL}	SR	-0.5	0.3V _{DDP}	V	-	

¹⁾ Not subject to production test, verified by design/characterization.

Note: No 5 V IIC interface is supported with these pads. Only voltages lower than 3.63 V must be applied to these pads.

Note: IIC pins have no pull-up and pull-down devices.

TC1115

Advance Information

Electrical Parameters

4.2.4 Power Supply Current

Parameter	Symbol	Limit V	alues	Unit	Test Conditions	
		typ. ¹⁾ ma				
Active mode supply	I _{DD}	314	679	mA	Sum of $I_{\text{DDS}}^{2)}$	
current		153	345	mA	$I_{\rm DD}$ at $V_{\rm DD}$ ³⁾	
		156	322	mA	$I_{\rm DD}$ at $V_{\rm DDP}$	
Idle mode supply current	I _{ID}	74	154	mA	Sum of $I_{\text{DDS}}^{2)4)}$	
		66	130	mA	$I_{\rm DD}$ at $V_{\rm DD}^{3)4)}$	
		6	15	mA	$I_{\rm DD}$ at $V_{\rm DDP}^{4)}$	
Deep sleep mode supply	I _{DS}	2	19	mA	Sum of $I_{\text{DDS}}^{2)5)}$	
current		2	19	mA	$I_{\rm DD}$ at $V_{\rm DD}{}^{3)5)}$	
		3.6	58	μA	$I_{\rm DD}$ at $V_{\rm DDP}^{5)}$	

¹⁾ Typical values are measured at 25°C, CPU clock at 150 MHz, and nominal supply voltage that is 3.3 V for V_{DDP}, V_{DDOSC3} and 1.5 V for V_{DD}, V_{DDOSC}. These currents are measured using a typical application pattern. The power consumption of modules can increase or decrease using other application programs.

²⁾ These power supply currents are defined as the sum of all currents at the V_{DD} power supply lines: $V_{DD} + V_{DDP} + V_{DDOSC3} + V_{DDOSC}$

³⁾ This measurement includes the TriCoreTM and Logic power supply lines.

⁴⁾ CPU is in idle state, input clocks to all peripherals are enabled.

⁵⁾ Clock generation is disabled at the source.

TC1115

Advance Information

Electrical Parameters

4.3.6 Timing for JTAG Signals

(Operating Conditions apply; $C_{\rm L}$ = 50 pF)

Parameter	Symbol	Limits		Unit
		min	max	
TCK clock period	t _{TCK} SR	50	_	ns
TCK high time	t ₁ SR	10	-	ns
TCK low time	t ₂ SR	29	_	ns
TCK clock rise time	t ₃ SR	—	0.4	ns
TCK clock fall time	t ₄ SR	_	0.4	ns

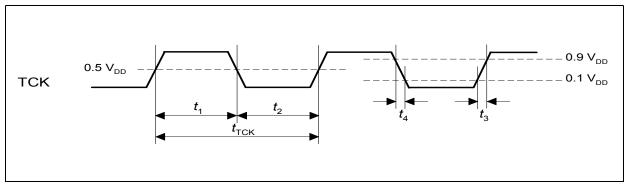


Figure 4-6 TCK Clock Timing

Electrical Parameters

4.3.8 EBU Timings

4.3.8.1 SDCLKO Output Clock Timing

(Operating Conditions apply; CL = 50 pF)

Parameter	Symbol	Limits ¹⁾		Limits ²⁾		Unit	
		min	max	min	max		
SDCLKO period	t ₁ CC	10	_	8.3	-	ns	
SDCLKO high time	t ₂ CC	3	_	2.5	_	ns	
SDCLKO low time	t ₃ CC	3	_	2.5	_	ns	
SDCLKO rise time	t ₄ CC	_	2.5	_	2.5	ns	
SDCLKO fall time	t ₅ CC	_	2.5	_	2.5	ns	

¹⁾ The parameters are applicable for PC100 SDRAM access and the maximum SDCLKO is up to 100 MHz.

²⁾ The parameters are applicable for PC133 SDRAM access and the maximum SDCLKO is up to 120 MHz.

4.3.8.2 BFCLKO Output Clock Timing

(Operating Conditions apply; $C_{L} = 50 \text{ pF}$)

Parameter	Symbol		Limit ¹⁾		Limit ²⁾		Unit	
			min	max	min	max		
Clock period	<i>t</i> ₁	CC	20	-	16.7	-	ns	
BFCLKO high time	<i>t</i> ₂	CC	6.6	-	7.5	-	ns	
BFCLKO low time	<i>t</i> ₃	CC	6.6	-	7.5	-	ns	
BFCLKO rise time	<i>t</i> ₄	CC	-	3.5	-	3.5	ns	
BFCLKO fall time	<i>t</i> ₅	CC	-	2.5	-	2.5	ns	

¹⁾ The CPU runs at 150 MHz and the Burst Flash runs at divided by 3 clock.

²⁾ The CPU runs at 120 MHz and the Burst Flash runs at divided by 2 clock.

Electrical Parameters

4.3.9 Peripheral Timings

4.3.9.1 SSC Master Mode Timing

(Operating Conditions apply; C_{L} = 50 pF)

Parameter		Symbol	Limit Values		Unit
			min.	max.	
SCLK clock period	<i>t</i> ₀	CC	2*T _{SSC} 1)	_	ns
MTSR/SLSOx delay from SCLK 🖌	<i>t</i> ₁	CC	0	8	ns
MRST setup to SCLK -	<i>t</i> ₂	SR	10	-	ns
MRST hold from SCLK -	<i>t</i> ₃	SR	5	-	ns

¹⁾ $T_{SSCmin} = T_{SYS} = 1/f_{SYS}$. When $f_{SYS} = 120MHz$, $t_0 = 16.7ns$

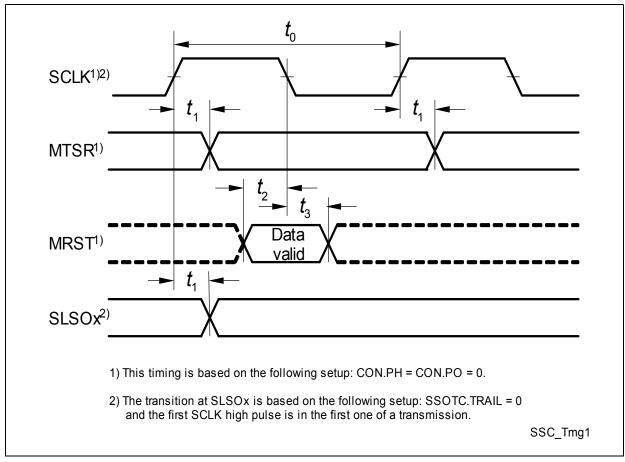


Figure 4-14 SSC Master Mode Timing

Electrical Parameters

TC1115

4.3.9.2 MLI Interface Timing

(Operating Conditions apply; $C_{L} = 50 \text{ pF}$)

Parameter	Symbol	Limit Values		Unit
		min.	max.	
TCLK/RCLK clock period	t ₀ CC/SR	2*T _{MLI} ¹⁾	-	ns
MLI outputs delay from TCLK 🦨	t ₅ CC	0	8	ns
MLI inputs setup to RCLK 飞	t ₆ SR	4	-	ns
MLI inputs hold to RCLK -	t ₇ SR	4	-	ns
RREADY output delay from TCLK ٦	t ₈ CC	0	8	ns

¹⁾ $T_{MLImin} = T_{SYS} = 1/f_{SYS}$. When $f_{SYS} = 120MHz$, $t_0 = 16.7ns$

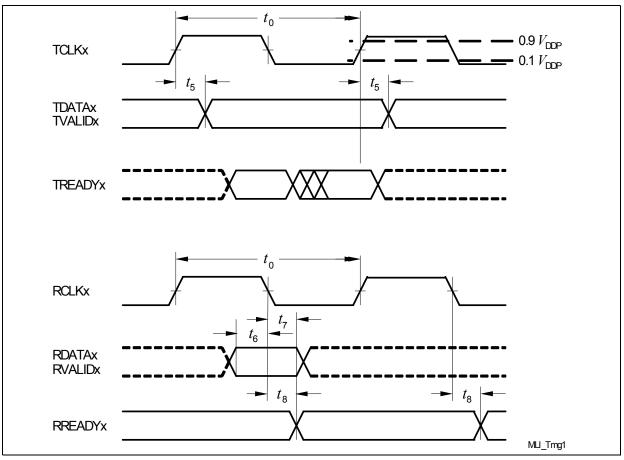


Figure 4-15 MLI Interface Timing

Note: The generation of RREADYx is in the input clock domain of the receiver. The reception of TREADYx is asynchronous to TCLKx.

Package Outline

TC1115

5 Package Outline

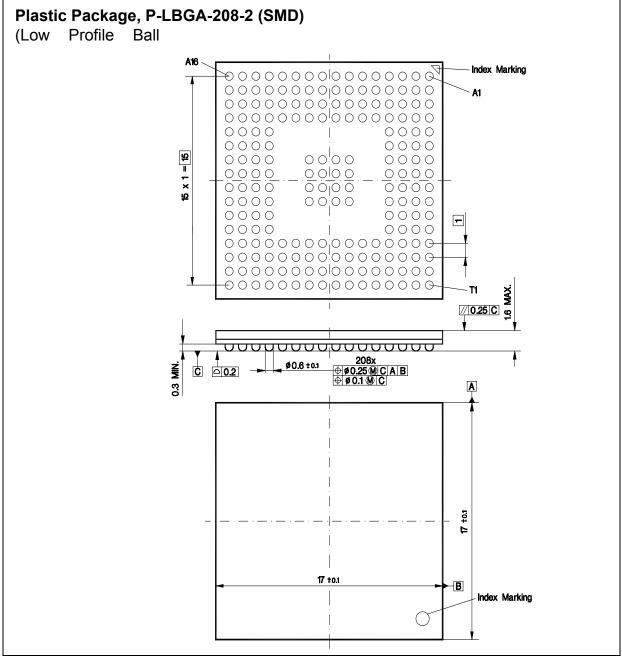


Figure 5-1 P-LBGA-208-2 Package

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm