

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm304-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description
	1	ST	Yes	Quadrature Encoder Index1 pulse input
HOME1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Home1 pulse input
QEA1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
	-			external clock input in Timer mode.
QEB1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP1 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 1.
INDX2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Index2 Pulse input.
HOME2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home2 Pulse input.
QEA2 ⁽¹⁾	I.	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer
				external clock input in Timer mode.
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP2 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 2.
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.
CSDI	1	ST	Yes	Data Converter Interface serial data input pin.
CSDO	0	—	Yes	Data Converter Interface serial data output pin.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0		Yes	CAN1 bus transmit pin
C2RX	I	ST	Yes	CAN2 bus receive pin.
C2TX	0	—	Yes	CAN2 bus transmit pin
RTCC	0		No	Real-Time Clock and Calendar alarm output.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-,	I	Analog	No	Comparator 1 inputs.
C1IN1-, C1IN3-				
C10UT	0	—	Yes	Comparator 1 output.
C2IN1+, C2IN2-,	Ι	Analog	No	Comparator 2 inputs.
C2IN1-, C2IN3-	-		.,	
C2001	0		Yes	Comparator 2 output.
C3IN1+, C3IN2-,	I	Analog	No	Comparator 3 inputs.
C2IN1-, C3IN3-	~		Vaa	Compositor 2 output
03001	0		res	
C4IN1+, C4IN2-,	I	Analog	No	Comparator 4 inputs.
C4IN1-, C4IN3-	~			
64001	U		res	
C5IN1-, C5IN2-,		Analog	No	Comparator 5 inputs.
C5IN3-, C5IN4-,				
C5IN1+			V	
C5001	0	—	Yes	Comparator 5 output.
Legend: CMOS = CM	10Scc	mnatible	input a	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

I = Input

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0(²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹) IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	OA: Accumu	lator A Overflow	v Status bit				
	1 = Accumul 0 = Accumul	ator A has over ator A has not c	flowed overflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit				
	1 = Accumul 0 = Accumul	ator B has over	flowed				
bit 13	SA: Accumu	lator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul 0 = Accumul	ator A is satura ator A is not sat	ted or has bee	en saturated at	some time		
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul	ator B is satura	ted or has bee	en saturated at	some time		
	0 = Accumul	ator B is not sat	turated				
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumul	ator A or B has	overflowed				
	0 = Neither A	Accumulator A c	or B has overfl	owed			
bit 10	SAB: SA S	B Combined A	ccumulator 'Si	icky Status bit	1		
	1 = Accumul 0 = Neither A	ator A or B is sa Accumulator A c	or B is saturated	s been saturate ed	ed at some time	•	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop i	n progress					
	0 = DO loop i	not in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-	out from the 4th	low-order bit (for byte-sized d	ata) or 8th low-	order bit (for wo	rd-sized data)
	0 = No carry data) of	-out from the 4 the result occur	th low-order b red	oit (for byte-size	ed data) or 8th	low-order bit (1	or word-sized
Note 1:	The IPL<2:0> bits Level. The value i IPL<3> = 1 .	are concatena n parentheses i	ted with the IF ndicates the I	PL<3> bit (COR PL, if IPL<3> =	CON<3>) to fo 1. User interru	rm the CPU Inte pts are disable	errupt Priority d when

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.2 Data Address Space

The dsPIC33EPXXXGM3XX/6XX/7XX CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-5 through Figure 4-7.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGM3XX/6XX/7XX devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGM3XX/6XX/7XX instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGM3XX/6XX/7XX core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

														-				
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0	>			_	_	_		—	_	—	—	0000
RPINR1	06A2	_	_	—	—	_	_	_	—	_	— INT2R<6:0>					•	0000	
RPINR3	06A6	_	_	- <u> </u>					0000									
RPINR7	06AE	_				IC2R<6:0>	>			_				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>	>			—				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>	>			_				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>	>			_				IC7R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_				OCFAR<6:0	>			0000
RPINR12	06B8	—				FLT2R<6:0	>			—				FLT1R<6:0>	•			0000
RPINR14	06BC	—			(QEB1R<6:0)>			—				QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:	:0>			_			I	NDX1R<6:0	>			0000
RPINR16	06C0	—		QEB2R<6:0> — QEA2R<6:0>						0000								
RPINR17	06C2	_			Н	OME2R<6:	:0>			_			I	NDX2R<6:0	>			0000
RPINR18	06C4	—	_	—	—	_	_	_	—	—				U1RXR<6:0	>			0000
RPINR19	06C6	—	—	_	—	_	_		—	—				U2RXR<6:0	>			0000
RPINR22	06CC	—			S	SCK2R<6:0)>						0000					
RPINR23	06CE	_	_	-	_	_	_	_	_	-				SS2R<6:0>				0000
RPINR24	06D0	_			(SCKR<6:0)>			_				CSDIR<6:0>	>			0000
RPINR25	06D2	_	_	-	_	_	_	_	_	-			(COFSR<6:0	>			0000
RPINR27	06D6	—			U	3CTSR<6:	0>			—				U3RXR<6:0	>			0000
RPINR28	06D8	—			U	4CTSR<6:	0>			_				U4RXR<6:0	>			0000
RPINR29	06DA	_			ç	SCK3R<6:0)>			_				SDI3R<6:0>				0000
RPINR30	06DC	_	_	_	_	_	_	_	_	_				SS3R<6:0>				0000
RPINR37	06EA	—			S	YNCI1R<6	:0>			—					0000			
RPINR38	06EC	_			D	CMP1R<6	:0>			_					0000			
RPINR39	06EE	—			DTCMP3R<6:0> — DTCMP2R<6:0>				- DTCMP2R<6:0>				0000					
RPINR40	06F0				D	CMP5R<6	:0>			— DTCMP4R<6:0>				0000				
RPINR41	06F2		_	_	_	_	_		_	_	— DTCMP6R<6:0>						0000	

TABLE 4-34: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: CTMU REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	—	—	—	—		—	_	_	0000
CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		_	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: JTAG INTERFACE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0		_	_	_						JDATAH	<27:16>						xxxx
JDATAL	0FF2								JDATAI	_<15:0>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm Va	lue Register W	/indow Based	on ALRMF	PTR<1:0>							xxxx
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624						RTCC V	alue Register \	Window Based	on RTCP	TR<1:0>							xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 11-29: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			—	—			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP6R<6:	0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-0	DTCMP6R<6 (see Table 11	: 0>: Assign PV -2 for input pin	VM Dead-Time selection num	e Compensation hbers)	on Input 6 to the	Corresponding	g RPn Pin bits
	1111100 = I r	put tied to RPI	124				
	•						
	•						
	0000001 = lr	put tied to CMI	P1				

0000000 = Input tied to Vss

U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ____ ____ **BLANKSEL3 BLANKSEL2** BLANKSEL1 **BLANKSEL0** ____ ____ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL2 CHOPSEL1 CHOPHEN CHOPSEL3 CHOPSEL0 CHOPLEN _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as state blank source 0010 = PWM2H is selected as state blank source 0001 = PWM1H is selected as state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (CHOP) the selected PWMx outputs. 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as CHOP clock source 0010 = PWM2H is selected as CHOP clock source 0001 = PWM1H is selected as CHOP clock source 0000 = Chop clock generator is selected as CHOP clock source bit 1 CHOPHEN: PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 16-24: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU)" (DS70661), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · Precise time measurement resolution of 1 ns
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	1 = Generates clock pulse when the broadcast command is executed
	0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
Note 1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and

- PTGSTRT = 1).
- 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

		5444.0	D 444 0	D #44 0	D 444 0	D 444 0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMP1R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ALRMEN: Ala	arm Enable bit					
2	1 = Alarm is	enabled (cleare	ed automatica	ally after an ala	arm event when	ever ARPT<7:)> = 0x00 and
	CHIME =	• 0)		5			
	0 = Alarm is	disabled					
bit 14	CHIME: Chim	ne Enable bit					
	1 = Chime is	enabled; ARP	T<7:0> bits ar	e allowed to ro	oll over from 0x0	00 to 0xFF	
h:: 40.40			T<7:0> Dits St	op once they i	reach 0x00		
DIT 13-10		>: Alarm Mask	Configuration	DIIS			
	0000 = Every	/ nair second					
	0010 = Every	/ 10 seconds					
	0011 = Every	/ minute					
	0100 = Every	/ 10 minutes					
	0101 = Every	/ hour					
	0110 = Once	a week					
	1000 = Once	a month					
	1001 = Once	a year (except	when configu	ured for Februa	ary 29th, once e	every 4 years)	
	101x = Rese	rved – do not u rved – do not u	se				
hit 0.8			io Pogistor M	lindow Pointor	bite		
Dit 9-0	Points to the	.07. Alaini van	Δlarm Value r	agisters when	reading the AL	RMV/AL register	The
	ALRMPTR<1	:0> value decre	ements on eve	ery read or writer	te of ALRMVAL	until it reaches	'00'.
bit 7-0	ARPT<7:0>:	Alarm Repeat (Counter Value	bits			
	11111111 =	Alarm will repe	at 255 more ti	imes			
	•						
	•						
	•	Alarm will not r	eneat				
	The counter of	lecrements on	any alarm eve	ent. The counter	er is prevented	from rolling ove	r from 0x00 to
	0xFF unless 0	CHIME = 1.	-		-	-	

REGISTER 27-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14			PTEN	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTEN	l<7:2>			PTEN	I <1:0>
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at Reset	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	PTEN15: PM	1CS2 Strobe En	able bit				
	1 = PMA15 f	unctions as eith	er PMA<15> c	or PMCS2			
	0 = PMA15 f	unctions as port	: I/O				
bit 14	PTEN14: PM	ICS1 Strobe En	able bit				
	1 = PMA14 f	unctions as eith	er PMA<14> c	or PMCS1			
	0 = PMA14 f	unctions as port	: I/O				
bit 13-2	PTEN<13:2>	PMP Address	Port Enable b	oits			
	1 = PMA<13 0 = PMA<13	:2> function as :2> function as	PMP address port I/Os	lines			
bit 1-0	PTEN<1:0>:	PMALH/PMALI	_ Strobe Enabl	le bits			

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER⁽¹⁾

Note 1: This register is not available on 44-pin devices.

0 = PMA1 and PMA0 function as port I/Os

© 2013-2014 Microchip Technology Inc.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz				
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms				
OS53 DCLK CLKO Stability (Jitter) ⁽²⁾			-3	0.5	3	%				

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

AC CHA	ARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise states of the condition						therwise stated) d	
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz ⁽¹⁾								
F20a	FRC	-1.5	0.5	+1.5	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1.5	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC @ 32.768 kHz								
F21a	LPRC	-15	5	+15	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	10	+30	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

^{© 2013-2014} Microchip Technology Inc.

FIGURE 33-19: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 33-38:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0	W to 3.6V			
		TICS	(unless otherwise stated)							
//0 011/				Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
	•	1			-40°	$C \le TA \le$	+125°C for Extended			
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	FscP	Maximum SCKx Input Frequency	—	—	15	MHz	(Note 3)			
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 (Note 4)			
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns				
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120			ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)			
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	—	ns	(Note 4)			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 34-11: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

Peripheral Clock Jitter =
$$\frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz.

SPI SCK Jitter =
$$\begin{bmatrix} D_{CLK} \\ \sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)} \end{bmatrix} = \begin{bmatrix} \frac{5\%}{\sqrt{16}} \end{bmatrix} = \begin{bmatrix} \frac{5\%}{4} \end{bmatrix} = 1.25\%$$

TABLE 34-12: INTERNAL FRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz								
HF20	FRC	-3	—	+3	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 3.0-3.6V$		

TABLE 34-13: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise state Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Characteristic	Min	Тур	Max	Units	Conditions	
	LPRC @ 32.768 kHz ^(1,2)						
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C$ VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 30.5 "Watchdog Timer (WDT)" for more information.

35.2 Package Details

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	Е		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

This is the initial released version of this document.

Revision B (June 2013)

Changes to Section 5.0 "Flash Program Memory", Register 5-1. Changes to Section 6.0 "Resets", Figure 6-1. Changes to Section 26.0 "Op Amp/Comparator Module", Register 26-2. Updates to most of the tables in Section 33.0 "Electrical Characteristics". Minor text edits throughout the document.

Revision C (September 2013)

Changes to Figure 23-1. Changes to Figure 26-2. Changes to Table 30-2. Changes to Section 33.0 "Electrical Characteristics". Added Section 34.0 "High-Temperature Electrical Characteristics" to the data sheet. Minor typographical edits throughout the document.

Revision D (August 2014)

This revision incorporates the following updates:

- Sections:
 - Updated Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers", Section 8.0 "Direct Memory Access (DMA)", Section 10.3 "Doze Mode", Section 21.0 "Controller Area Network (CAN) Module (dsPIC33EPXXXGM6XX/7XX Devices Only)", Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)", Section 23.1.2 "12-Bit ADCx Configuration", Section 21.4 "CAN Message Buffers", Section 35.0 "Packaging Information"
- · Figures:
 - Updated **"Pin Diagrams"**, Figure 1-1, Figure 9-1
- · Registers:
 - Updated Register 5-1, Register 8-2, Register 21-1, Register 23-2
- · Tables:
 - Updated Table 1-1, Table 7-1, Table 8-1, Table 34-9, Table 1, Table 4-2, Table 4-3, Table 4-25, Table 4-33, Table 4-34, Table 4-39, Table 4-30, Table 4-46, Table 4-47, Table 33-16, Table 34-8

Resets	. 111
Brown-out Reset (BOR)	. 111
Configuration Mismatch Reset (CM)	. 111
Illegal Condition Reset (IOPUWR)	. 111
Illegal Address Mode	. 111
Illegal Opcode	. 111
Security	. 111
Uninitialized W Register	. 111
Master Clear Pin Reset (MCLR)	. 111
Master Reset Signal (SYSRST)	. 111
Power-on Reset (POR)	. 111
RESET Instruction (SWR)	. 111
Trap Conflict Reset (TRAPR)	. 111
Watchdog Timer Time-out Reset (WDTO)	. 111
Revision History	. 527
RTCC	
Control Registers	. 386
Resources	. 385
Writing to the Timer	. 385
S	
Serial Peripheral Interface (SPI)	273
Special Features of the CDU	111

Serial Peripheral Interface (SPI)	
Special Features of the CPU	
SPI	
Control Registers	
Helpful Tips	
Symbols Used in Opcode Descriptions	

Т

Temperature and Voltage Specifications	
AC	. 503
Timer	
Control Registers	. 216
Timer1	. 211
Control Register	. 212
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	. 213
Timing Diagrams	
10-Bit ADC1 Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,	
SSRCG = 0)	. 496
10-Bit ADC1 Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SSRCG = 0, SAMC<4:0> = 00010)	. 496
12-Bit ADC1 Conversion (ASAM = 0,	
SSRC<2:0> = 000, SSRCG = 0)	. 494
BOR and Master Clear Reset	. 448
CANx I/O	. 487
External Clock	. 446
High-Speed PWMx	. 455
High-Speed PWMx Fault	. 455
I/O Characteristics	. 448
I2Cx Bus Data (Master Mode)	. 483
I2Cx Bus Data (Slave Mode)	. 485
I2Cx Bus Start/Stop Bits (Master Mode)	. 483
I2Cx Bus Start/Stop Bits (Slave Mode)	. 485
Input Capture x (ICx)	. 453
Load Conditions	. 490
OCx/PWMx	. 454
Output Compare x (OCx)	. 454
,	

Power-on Reset Characteristics	449
QEAx/QEBx Input	457
QEIx Index Pulse	458
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	474
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	473
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	471
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	472
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	481
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	479
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	475
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	477
SPI2, SPI3 Master Mode (Full-Duplex,	
CKE = 0, CKP = x, SMP = 1)	462
SPI2, SPI3 Master Mode (Full-Duplex,	
CKE = 1, CKP = x, SMP = 1)	461
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	459
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	460
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 0, SMP = 0)	469
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)	467
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)	463
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)	465
Timer1-Timer5 External Clock	451
TimerQ (QEIx Module) External Clock	456
UARTx I/O	487
Timing Specifications	
I2Cx Bus Data Requirements (Master Mode)	484
I2Cx Bus Data Requirements (Slave Mode)	486

291
290
289
116
116

Watchdog Timer (WDT)	411, 417
Programming Considerations	417
WWW Address	536
WWW, On-Line Support	