

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX PRODUCT FAMILY

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

	s)				R	ema	ppak	ole P	eripł	neral	s													
Device	Program Flash Memory (Kbyte	RAM (Kbytes)	CAN	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM (Channels)	QEI	UART	SPI ⁽¹⁾	DCI	External Interrupts ⁽²⁾	I²C™	CRC Generator	ADC	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	AMP	RTCC	I/O Pins	Pins	Packages
dsPIC33EP128GM304	400	10	0																					
dsPIC33EP128GM604	128	16	2	Î																				
dsPIC33EP256GM304	256	22	0	0/4	0	0	12	2	4	2	1	5	2	1	2	10	4/5	1	Voo	No	No	25	44	TQFP, QFN
dsPIC33EP256GM604	200	32	2	9/4	0	0			-	3	1	э	2	1	2	10	4/5	1	163	NU	INU	35	44	
dsPIC33EP512GM304	510	10	0																					
dsPIC33EP512GM604	512	40	2	İ								_												
dsPIC33EP128GM306	128	16	0																					
dsPIC33EP128GM706	120	10	2																					
dsPIC33EP256GM306	256	32	0	0//	8	8	12	2	1	з	1	5	2	1	2	30	4/5	1	Voc	Voc	Vac	53	64	TQFP,
dsPIC33EP256GM706	230	52	2	5/4	0	0	12	2	-	5		5	2		2	50	7/5		103	103	103	55	04	QFN
dsPIC33EP512GM306	512	48	0																					
dsPIC33EP512GM706	0.12	10	2																					
dsPIC33EP128GM310	128	16	0																					
dsPIC33EP128GM710	120	10	2																					
dsPIC33EP256GM310	256	32	0 9	9/4	8	8	12	2	4	3	1	5	2	1	2	49	4/5	1	Yes	Yes	Yes	85	100/	TQFP,
dsPIC33EP256GM710	_30		2		9/4 8 8	Ĩ		-		Ĩ			-		2 49	49 4/5	/5 1					121	TFBGA	
dsPIC33EP512GM310	512	48	0	ļ																				
dsPIC33EP512GM710	0.2		2																					

TABLE 1: dsPIC33EPXXXGM3XX/6XX/7XX FAMILY DEVICES

Note 1: Only SPI2 and SPI3 are remappable.

2: INT0 is not remappable.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46								PDC2	<15:0>								0000
PHASE2	0C48		PHASE2<15:0> 0000															
DTR2	0C4A	_	_		DTR2<13:0> 000								0000					
ALTDTR2	0C4C	_	_							ALTDTF	2<13:0>							0000
SDC2	0C4E								SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	E2<15:0>								0000
TRIG2	0C52								TRGCN	1P<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C78								PWMCA	P2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	—	—	—	LEB<11:0>000(0000				
AUXCON2	0C5E	_		—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC3	0C66								PDC3	<15:0>								0000
PHASE3	0C68								PHASE	3<15:0>								0000
DTR3	0C6A	_								DTR3	<13:0>							0000
ALTDTR3	0C6C	_								ALTDTF	3<13:0>							0000
SDC3	0C6E								SDC3	<15:0>								0000
SPHASE3	0C70								SPHASE	E3<15:0>								0000
TRIG3	0C72								TRGCM	IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0			_	_	_		TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	P3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPLL 0								0000				
LEBDLY3	0C7C	_	_	_	_						LEB<	11:0>						0000
AUXCON3	0C7E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGM3XX/6XX/7XX

TABLE 4-67: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addre	SS	Bit-Reversed Address							
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

REGISTER 7-1:	SR: CPU STATUS REGISTER ⁽¹⁾
---------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14) $101 = CPU Interrupt Priority Level is 5 (13)$ $100 = CPU Interrupt Priority Level is 4 (12)$ $011 = CPU Interrupt Priority Level is 3 (11)$ $010 = CPU Interrupt Priority Level is 2 (10)$ $001 = CPU Interrupt Priority Level is 1 (9)$ $000 = CPU Interrupt Priority Level is 0 (8)$

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	—	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—		—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	Iown
bit 15	ROON: Refer	ence Oscillato	r Output Enab	ole bit	(2)		
	1 = Reference	e oscillator out	out is enabled	on the REFCL	.K pin ⁽²⁾		
L:4 4	0 = Reference	e oscillator outp	out is disabled	1			
DIL 14		ference Opeille	U Har Dun in Sk	aan hit			
DIL 13	1 - Poforonov	erence Oscilla	nor Run in Sie	to run in Sloon			
	0 = Reference	e oscillator out	out is disabled	d in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator	crystal is used	as the refere	nce clock			
	0 = System cl	lock is used as	the reference	eclock			
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
	1111 = Refer	ence clock divi	ded by 32,76	8			
	1110 = Refer	ence clock divi ence clock divi	ded by 16,384 ded by 8 192	4			
	1100 = Refer	ence clock divi	ded by 4,096				
	1011 = Refer	ence clock divi	ded by 2,048				
	1010 = Refer	ence clock divi	ded by 1,024				
	1001 = Refer	ence clock divi ence clock divi	ded by 512 ded by 256				
	0111 = Refer	ence clock divi	ded by 128				
	0110 = Refer	ence clock divi	ded by 64				
	0101 = Refer	ence clock divi	ded by 32				
	0100 = Refer	ence clock divi	ded by 16				
	0010 = Refer	ence clock divi	ded by 4				
	0001 = Refer	ence clock divi	ded by 2				
	0000 = Refer	ence clock					
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

NOTES:

23.2 ADCx Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADCx interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADCx analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADCx buffer used in this mode. The ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- When the DMA module is disabled (ADDMAEN = 0), the ADCx has 16 result buffers. ADCx conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADCx buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- 3. When the DMA module is enabled (ADDMAEN = 1), the ADCx module has only 1 ADCx result buffer (i.e., ADC1BUF0) per ADCx peripheral and the ADCx conversion result must be read, either by the CPU or DMA Controller, before the next ADCx conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADCx. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADCx block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "dsPIC33/PIC24 Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621)

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER⁽³⁾ (CONTINUED)

CHONA: Channel 0 Negative Input Select for Sample MUXA bit 1 = Channel 0 negative input is AN1 ⁽¹⁾ 0 = Channel 0 negative input is VREFL
Unimplemented: Read as '0'
CH0SA<5:0>: Channel 0 Positive Input Select for Sample MUXA bits ^(1,4,5)
<pre>1111111 = Channel 0 positive input is (AN63) unconnected 111110 = Channel 0 positive input is (AN62) the CTMU temperature voltage 111101 = Channel 0 positive input is (AN61) reserved</pre>
•
•
<pre>110010 = Channel 0 positive input is (AN50) reserved 110001 = Channel 0 positive input is AN49 110000 = Channel 0 positive input is AN48 101111 = Channel 0 positive input is AN47 101110 = Channel 0 positive input is AN46 •</pre>
<pre>011010 = Channel 0 positive input is AN26 011001 = Channel 0 positive input is AN25 or Op Amp 5 output voltage⁽²⁾ 011000 = Channel 0 positive input is AN24 •</pre>
000111 = Channel 0 positive input is AN7 000110 = Channel 0 positive input is AN6 or Op Amp 3 output voltage ⁽²⁾ 000101 = Channel 0 positive input is AN5 000100 = Channel 0 positive input is AN4 000011 = Channel 0 positive input is AN3 or Op Amp 1 output voltage ⁽²⁾ 000010 = Channel 0 positive input is AN2 000001 = Channel 0 positive input is AN1 000001 = Channel 0 positive input is AN1

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.
 - 4: Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB5 and CH0SA5 bits are 'Reserved' for ADC2 and should be programmed to '0'.
 - **5:** Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

24.2 DCI Control Registers

REGISTER 24-1: DCICON1: DCI CONTROL REGISTER 1

	r O		r O				
	1-0		1-0				
bit 15	I	DCIGIDE	I	DLOOI	COCKD	COCKL	bit 8
511 10							bit 0
R/W-0	R/W-0	R/W-0	r-0	r-0	r-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	r	r	r	COFSM1	COFSM0
bit 7							bit 0
. .							
Legend:		r = Reserved b	it 				
R = Reada		vv = vvritable b	IT	U = Unimplem	iented bit, read a	s 'U' x = Dit io unkno	
-n = value	atPOR	= Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unknown	own
bit 15	DCIEN: DCI M	lodule Enable bi	t				
	1 = DCI modul	e is enabled					
	0 = DCI modul	e is disabled					
bit 14	Reserved: Re	ad as '0'					
bit 13	DCISIDL: DCI	Stop in Idle Cor	ntrol bit				
	1 = Module wil 0 = Module wil	I halt in CPU IdI I continue to ope	e mode erate in CPU lo	dle mode			
bit 12	Reserved: Re	ad as '0'					
bit 11	DLOOP: Digita	al Loopback Mo	de Control bit				
	1 = Digital Loo	pback mode is e	enabled; CSDI	and CSDO pin	s are internally c	onnected	
1.11.4.0	0 = Digital Loo	pback mode is o	disabled				
bit 10	CSCKD: Samp	ble Clock Directi	on Control bit	a anablad			
	0 = CSCK pin	is an output whe	en DCI module	is enabled			
bit 9	CSCKE: Samp	ole Clock Edge (Control bit				
	1 = Data chang	ges on serial clo	ck falling edge	, sampled on s	erial clock rising	edge	
	0 = Data chang	ges on serial clo	ck rising edge	, sampled on se	erial clock falling	edge	
bit 8	COFSD: Fram	e Synchronizati	on Direction C	ontrol bit			
	1 = COFS pin 0 = COFS pin	is an input wher	n DCI module i An DCI module	s enabled			
bit 7	UNFM: Underf	low Mode bit					
	1 = Transmits	last value writter	n to the Transr	nit registers on	a transmit under	flow	
	0 = Transmits	ʻ0' <mark>s on a trans</mark> m	it underflow				
bit 6	CSDOM: Seria	al Data Output M	lode bit				
	1 = CSDO pin	will be tri-stated	during disable	ed transmit time	e slots		
bit 5	D.IST DCI Dat	ta Justification (Sontrol hit				
Sit 0	1 = Data trans	mission/receptio	n is begun durir	ng the same ser	ial clock cycle as	the frame synchr	ronization pulse
	0 = Data trans	mission/reception	on is begun on	e serial clock c	ycle after the frai	me synchroniza	tion pulse
bit 4-2	Reserved: Re	ad as '0'					
bit 1-0	COFSM<1:0>:	Frame Sync M	ode bits				
	11 = 20-Bit AC	-LINK mode					
	$01 = I^2 S Frame$	e Sync mode					
	00 = Multi-Cha	annel Frame Syr	nc mode				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0
bit 7		•	•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13 bit 12-8	PTGCLK<2:0 111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m 000 = PTG m PTGDIV<4:02 11111 = Divic 00001 = Divic 00001 = Divic	 Select PTG red red nodule clock so PTG Module de-by-32 de-by-31 	Module Clock urce will be T3 urce will be T2 urce will be T4 urce will be T4 urce will be F6 urce will be F6 clock Presca	Source bits CLK CLK CLK D SC Ier (divider) bi	ts		
bit 7-4 PTGPWD<3:0>: PTG Trigger Output Pulse-Width bits 1111 = All trigger outputs are 16 PTG clock cycles wide 1110 = All trigger outputs are 15 PTG clock cycles wide 0001 = All trigger outputs are 2 PTG clock cycles wide 0000 = All trigger outputs are 1 PTG clock cycle wide							
bit 2-0		0>: Select PTG	~ Watchdog Tir	mer Time-out	Count Value hits	3	
UIL 2-U	111 = Watche 110 = Watche 101 = Watche 011 = Watche 011 = Watche 010 = Watche 001 = Watche 001 = Watche	dog Timer will t dog Timer is dis	ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 8 sabled	512 PTG clock 256 PTG clock 28 PTG clock 34 PTG clocks 32 PTG clocks 6 PTG clocks 8 PTG clocks	Sound value bits	,	

REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

REGISTER 25-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		10110		INA :45:05			
			PIGSDL	IIVI<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSDI	_IM<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG step delay value, representing the number of additional PTG clocks, between the start of a Step command and the completion of a Step command.

- **Note 1:** A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).
 - 2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits

'1' = Bit is set

May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

bit 7

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CON	COE	CPOL	—	—	OPMODE ⁽²⁾	CEVT ⁽³⁾	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽³⁾	EVPOL0 ⁽³⁾	_	CREF ⁽¹⁾	_	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾

_	-		
		bit	0

Legend:					
R = Readab	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15	CON: Op 1 = Com 0 = Com	o Amp/Comparator Enable b parator is enabled parator is disabled	it		
bit 14	COE: Co 1 = Com 0 = Com	mparator Output Enable bit parator output is present on parator output is internal only	the CxOUT pin y		
bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted					
bit 12-11	Unimple	mented: Read as '0'			
bit 10	OPMOD	E: Op Amp Select bit ⁽²⁾			
	1 = Op a 0 = Op a	mp is enabled mp is disabled			
bit 9	CEVT: C 1 = Com inter 0 = Com	omparator Event bit ⁽³⁾ aparator event, according to t rupts until the bit is cleared aparator event did not occur	the EVPOL<1:0> settings, occ	curred; disables future triggers and	
bit 8	COUT: C	omparator Output bit			
	When CF 1 = VIN+ 0 = VIN+ When CF 1 = VIN+ 0 = VIN+	POL = 0 (non-inverted polari > VIN- < VIN- POL = 1 (inverted polarity): < VIN- > VIN-	<u>ty):</u>		

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	_	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

.. · - •

DIT 15-12	Unimplemented: Read as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = PWM6H
	1010 = PWM6L
	1001 = PWM5H
	1000 = PWM5L
	0111 = PWM4H
	0110 = PWM4L
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0110 = PWM3H 0100 = PWM3L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2H

REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES ONLY)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8		
bit 15				·		•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0		
bit 7	•	•		·		•	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	Reset	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15 bit 14	Value at Reset 17 = Bit is set5 CS2: Chip Select 2 bit1 = Chip Select 2 is active0 = Chip Select 2 is active0 = Chip Select 2 is inactiveIf PMCON<7:6> = 11 or 00:Bit functions as ADDR15.4 CS1: Chip Select 1 bitIf PMCON<7:6> = 10:1 = Chip Select 1 is active0 = Chip Select 1 is inactiveIf PMCON<7:6> = 10:1 = Chip Select 1 is inactive0 = Chip Select 1 is inactiveIf PMCON<7:6> = 11 or 0x:								
bit 13-0	ADDR<13:0>	ADDR<13:0>: Destination Address bits							

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

2: This register is not available on 44-pin devices.

dsPIC33EPXXXGM3XX/6XX/7XX

29.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

 $\begin{array}{c} x16+x12+x5+1\\ \text{ and }\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+\\ x7+x5+x4+x2+x+1 \end{array}$

To program these polynomials into the CRC generator, set the register bits as shown in Table 29-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 29-1:	CRC SETUP EXAMPLES FOR
	16 AND 32-BIT POLYNOMIAL

CBC Control	Bit Values					
Bits	16-Bit Polynomial	32-Bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				

Г

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	vise sta perature	ted) -40°C \leq TA \leq -40°C \leq TA \leq	+85°C fi +125°C	v or Industrial for Extended	
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = Prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from E Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS . .

... ~

.

.

.

Note 1: These parameters are characterized, but are not tested in manufacturing.

AC CH	ARACTERIS	TICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				6 V for Industrial C for Extended
Param No.	Symbol	Chara	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchronous	Тсү + 20			ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20		_	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40		_	ns	N = Prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from I Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—		ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

Resets	. 111
Brown-out Reset (BOR)	. 111
Configuration Mismatch Reset (CM)	. 111
Illegal Condition Reset (IOPUWR)	. 111
Illegal Address Mode	. 111
Illegal Opcode	. 111
Security	. 111
Uninitialized W Register	. 111
Master Clear Pin Reset (MCLR)	. 111
Master Reset Signal (SYSRST)	. 111
Power-on Reset (POR)	. 111
RESET Instruction (SWR)	. 111
Trap Conflict Reset (TRAPR)	. 111
Watchdog Timer Time-out Reset (WDTO)	. 111
Revision History	. 527
RTCC	
Control Registers	. 386
Resources	. 385
Writing to the Timer	. 385
S	
Serial Peripheral Interface (SPI)	273
Special Features of the CDU	111

Serial Peripheral Interface (SPI)	
Special Features of the CPU	
SPI	
Control Registers	
Helpful Tips	
Symbols Used in Opcode Descriptions	

Т

Temperature and Voltage Specifications	
AC	. 503
Timer	
Control Registers	. 216
Timer1	. 211
Control Register	. 212
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	. 213
Timing Diagrams	
10-Bit ADC1 Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,	
SSRCG = 0)	. 496
10-Bit ADC1 Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SSRCG = 0, SAMC<4:0> = 00010)	. 496
12-Bit ADC1 Conversion (ASAM = 0,	
SSRC<2:0> = 000, SSRCG = 0)	. 494
BOR and Master Clear Reset	. 448
CANx I/O	. 487
External Clock	. 446
High-Speed PWMx	. 455
High-Speed PWMx Fault	. 455
I/O Characteristics	. 448
I2Cx Bus Data (Master Mode)	. 483
I2Cx Bus Data (Slave Mode)	. 485
I2Cx Bus Start/Stop Bits (Master Mode)	. 483
I2Cx Bus Start/Stop Bits (Slave Mode)	. 485
Input Capture x (ICx)	. 453
Load Conditions	. 490
OCx/PWMx	. 454
Output Compare x (OCx)	. 454
,	

Power-on Reset Characteristics	449
QEAx/QEBx Input	457
QEIx Index Pulse	458
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	474
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	473
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	471
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	472
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	481
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	479
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	475
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	477
SPI2, SPI3 Master Mode (Full-Duplex,	
CKE = 0, CKP = x, SMP = 1)	462
SPI2, SPI3 Master Mode (Full-Duplex,	
CKE = 1, CKP = x, SMP = 1)	461
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	459
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	460
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 0, SMP = 0)	469
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)	467
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)	463
SPI2, SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)	465
Timer1-Timer5 External Clock	451
TimerQ (QEIx Module) External Clock	456
UARTx I/O	487
Timing Specifications	
I2Cx Bus Data Requirements (Master Mode)	484
I2Cx Bus Data Requirements (Slave Mode)	486

291
290
289
116
116

Watchdog Timer (WDT)	411, 417
Programming Considerations	417
WWW Address	536
WWW, On-Line Support	