

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm306-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams (Continued)

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 2-7: INTERLEAVED PFC

FIGURE 2-8: BEMF VOLTAGE MEASURED USING THE ADC MODULE

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	-	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904	Output Compare 1 Secondary Register x:									xxxx							
OC1R	0906								Output	Compare	1 Register							xxxx
OC1TMR	0908							Out	tput Comp	are 1 Time	r Value Regi	ster						xxxx
OC2CON1	090A	-	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	tput Comp	oare 2 Sec	ondary Regis	ster						xxxx
OC2R	0910	Output Compare 2 Register xxxx																
OC2TMR	0912							Out	put Comp	are 2 Time	r Value Regi	ster						xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Comp	oare 3 Sec	ondary Regis	ster						xxxx
OC3R	091A								Output	Compare	3 Register							xxxx
OC3TMR	091C		-			_		Out	put Comp	are 3 Time	r Value Regi	ster	-					xxxx
OC4CON1	091E	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	oare 4 Sec	ondary Regis	ster						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926		-			_		Out	put Comp	are 4 Time	r Value Regi	ster	-					xxxx
OC5CON1	0928	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	oare 5 Sec	ondary Regis	ster						xxxx
OC5R	092E								Output	Compare	5 Register							xxxx
OC5TMR	0930		-			_		Out	put Comp	are 5 Time	r Value Regi	ster	-					xxxx
OC6CON1	0932	—		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	0936							Ou	tput Comp	oare 6 Sec	ondary Regis	ster						xxxx
OC6R	0938								Output	Compare	6 Register							xxxx
OC6TMR	093A							Out	but Comp	are 6 Time	r Value Regi	ster						XXXX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

11.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-30 through Register 11-42). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15				•			bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				OCFAR<6:0	>			
bit 7	·						bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6-0	OCFAR<6:0> (see Table 11	: Assign Outpu -2 for input pin	ut Compare Fa	ault A (OCFA) nbers)	to the Correspon	nding RPn Pin	bits	
	1111100 = lr	put tied to RPI	124					
	•							
	•							
	•							

REGISTER 11-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-8	DTCMP3R< (see Table 1 1111100 =	6:0>: Assign PW 1-2 for input pin Input tied to RPI Input tied to CMI Input tied to Vss	VM Dead-Tim selection nun 124 P1	e Compensatio nbers)	n Input 3 to th	ie Correspondin	g RPn Pin bits
bit 7	Unimpleme	nted: Read as 'o)'			_	
bit 6-0	DTCMP2R< (see Table 1 1111100 =	6:0>: Assign PW 1-2 for input pin Input tied to RPI Input tied to CMI Input tied to Vss	VM Dead-Tim selection nun 124 P1	e Compensatic nbers)	n Input 2 to th	e Corresponding	g RPn Pin bits

REGISTER 11-27: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾		TSIDL	_	_			_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS1	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	TON: Timer1 1 = Starts 16- 0 = Stops 16-I	On bit ⁽¹⁾ bit Timer1 bit Timer1									
bit 14	Unimplement	ted: Read as ')'								
bit 13	TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode										
bit 12-7	Unimplement	0 = Continues module operation in Idle mode									
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Fnable bit							
	TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Cated time accumulation is disabled										
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	·									
bit 3	Unimplement	ted: Read as ')'								
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	chronization Se	elect bit ⁽¹⁾						
	When TCS = 1 = Synchroni 0 = Does not = When TCS = This bit is jand	<u>1:</u> izes external cl synchronize ex <u>0:</u> pred.	ock input ternal clock ir	iput							
bit 1	TCS: Timer1 (Clock Source S	Select bit ⁽¹⁾								
-	1 = External c 0 = Internal cl	clock is from pir ock (FP)	n, T1CK (on th	ne rising edge)							
bit 0	Unimplement	ted: Read as ')'								
Note 1: Whatt	hen Timer1 is en empts by user so	abled in Exterr	nal Synchrono to the TMR1	us Counter mo register are ig	ode (TCS = 1, T nored.	SYNC = 1, TON	N = 1), any				

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	—
bit 15						•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-12	TRGDIV<3:0:	>: Trigger # Ou	Itput Divider bit	s			
	1111 = Trigg e	er output for ev	ery 16th trigge	revent			
	1110 = Trigge	er output for ev	ery 15th trigge	r event			
	1101 = Trigge	er output for ev	ery 14th trigge	r event			
	1100 = Trigg e	er output for ev	ery 13th trigge	r event			
	1011 = Trigg e	er output for ev	ery 12th trigge	r event			
	1010 = Trigge	er output for ev	ery 11th trigge	r event			
	1001 = Irigge	er output for ev	ery 10th trigge	revent			
	1000 = Trigge	er output for ev	ery 9th trigger	event			
	0111 = Trigge	er output for ev	ery 8th trigger	event			
	0110 - Trigge	er output for ev	ery 7th trigger	event			
	0101 = Trigge	er output for ev	ery 5th trigger	event			
	0011 = Trigge	er output for ev	erv 4th trigger	event			
	0010 = Trigg	er output for ev	erv 3rd triager	event			
	0001 = Trigge	er output for ev	ery 2nd trigger	event			
	0000 = Trigge	er output for ev	ery trigger eve	nt			
bit 11-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TRGSTRT<5	:0>: Trigger Po	stscaler Start E	Enable Select b	its ⁽¹⁾		
	111111 = W a	ait 63 PWM cyc	les before gen	erating the first	trigger event a	fter the module	is enabled
	•	-	-	-			
	•						
	•						
	000010 = Wa 000001 = Wa 000000 = Wa	ait 2 PWM cycle ait 1 PWM cycle ait 0 PWM cycle	es before gene e before genera es before gene	rating the first t ating the first tri rating the first t	rigger event aft igger event afte rigger event aft	er the module is r the module is er the module is	s enabled enabled s enabled

REGISTER 16-18: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	IFLTMOD: Inc 1 = Independ 0 = Independ	dependent Fau dent Fault mode	It Mode Enabled	le bit			
bit 14-10	CLSRC<4:0> 11111 = Faul 1110 = Res	Amp/Comparat hparator 4 Amp/Comparat Amp/Comparat Amp/Comparat Amp/Comparat Amp/Comparat It 8 It 7 It 6 It 5 It 4 It 3 It 2 It 1 Amp/Comparat	Control Signa or 5 or 3 or 2 or 1	al Source Sele	ct for the PWM>	Generator # b	its
bit 9	CLPOL: Curr 1 = The selec 0 = The selec	ent-Limit Polari ted current-lim ted current-lim	ity for PWMx (it source is ac it source is ac	Generator # bit tive-low tive-high	₍ (1)		
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is er imit mode is dis	e Enable for P nabled sabled	WMx Generat	or # bit		

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware clears at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware clears at the end of the eighth bit of a master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware clears at the end of a master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at the end of a master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware clears at the end of a master Start sequence
	0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 21-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUL	_<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<7:0>			
bit 7							bit 0
Legend:		C = Writable I	bit, but only '0'	can be writter	n to clear the bit		

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFUL	_<31:24>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFUL	_<23:16>				
bit 7							bit 0	
Legend:		C = Writable b	oit, but only 'C	' can be written	to clear the bi	t		
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown		

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

23.2 ADCx Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADCx interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADCx analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADCx buffer used in this mode. The ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- When the DMA module is disabled (ADDMAEN = 0), the ADCx has 16 result buffers. ADCx conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADCx buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- 3. When the DMA module is enabled (ADDMAEN = 1), the ADCx module has only 1 ADCx result buffer (i.e., ADC1BUF0) per ADCx peripheral and the ADCx conversion result must be read, either by the CPU or DMA Controller, before the next ADCx conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADCx. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use ANO-AN2. Carefully study the ADCx block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "dsPIC33/PIC24 Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621)

REGISTER 25-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		10110		INA :45:05			
			PIGSDL	IIVI<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSDI	_IM<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG step delay value, representing the number of additional PTG clocks, between the start of a Step command and the completion of a Step command.

- **Note 1:** A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).
 - 2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	vit U = Unimplemented bit, read as '0'				

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits

'1' = Bit is set

May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

NOTES:

Bit Field	Description					
WDTPRE	Watchdog Timer Prescaler bit					
	1 = 1:128					
	0 = 1:32					
WDTPOST<3:0>	Watchdog Timer Postscaler bits					
	1111 = 1:32,768					
	1110 = 1:16,384					
	•					
	•					
	0001 = 1:2					
	0000 = 1:1					
WDTWIN<1:0>	Watchdog Timer Window Select bits					
	11 = WDT Window is 25% of WDT Period					
	10 = WDT Window is 37.5% of WDT Period					
	01 = WDT Window is 50% of WDT Period					
ALTI2C1	Alternate I2C1 Pins bit					
	I = I2C1 is mapped to the ASDA1/SCL1 pins					
	Alternate I2C2 Bins hit					
ALTIZOZ	Alternate I2C2 First bit $1 - 12C2$ is manned to the SDA2/SCL2 pins					
	0 = 12C2 is mapped to the ASDA2/ASCI 2 pins					
BOREN	Brown-out Reset (BOR) Detection Enable bit					
Donen	1 = BOR is enabled					
	0 = BOR is disabled					
JTAGEN	JTAG Enable bit					
	1 = JTAG is enabled					
	0 = JTAG is disabled					
ICS<1:0>	ICD Communication Channel Select bits					
	11 = Communicates on PGEC1 and PGED1					
	10 = Communicates on PGEC2 and PGED2					
	01 = Communicates on PGEC3 and PGED3					
	ou - Reserved, du not de					

TABLE 30-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Two-Speed Start-up is not enabled when EC mode is used since the EC clocks will be ready immediately.

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Тур. ⁽²⁾	Max.	Units	Units Conditions				
Operating Cu	rrent (IDD) ⁽¹⁾							
DC20d	6.0	18.0	mA	-40°C				
DC20a	6.0	18.0	mA	+25°C	2 2)/			
DC20b	6.0	18.0	mA	+85°C	5.5V	10 1011-5		
DC20c	6.0	18.0	mA	+125°C				
DC21d	11.0	20.0	mA	-40°C				
DC21a	11.0	20.0	mA	+25°C	2 2)/	20 MIPS		
DC21b	11.0	20.0	mA	+85°C	3.3V			
DC21c	11.0	20.0	mA	+125°C				
DC22d	17.0	30.0	mA	-40°C				
DC22a	17.0	30.0	mA	+25°C	2 2)/			
DC22b	17.0	30.0	mA	+85°C	3.3V	40 101173		
DC22c	17.0	30.0	mA	+125°C				
DC23d	25.0	50.0	mA	-40°C		60 MIPS		
DC23a	25.0	50.0	mA	+25°C	2.21/			
DC23b	25.0	50.0	mA	+85°C	3.3V			
DC23c	25.0	50.0	mA	+125°C				
DC24d	30.0	60.0	mA	-40°C				
DC24a	30.0	60.0	mA	+25°C	3.3V	70 MIPS		
DC24b	30.0	60.0	mA	+85°C				

TABLE 33-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)
 - {
 - NOP(); }
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

34.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 33.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 33.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 34-2).

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

NX Øb

A B

С

С

0.15M

0.08M

Ð

ΩΟ(

0 0 C

000

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Number of Contacts	Ν	121		
Contact Pitch	е	0.80 BSC		
Overall Height	Α	1.00	1.10	1.20
Ball Height	A1	0.25	0.30	0.35
Overall Width	E	10.00 BSC		
Array Width	E1	8.00 BSC		
Overall Length	D	10.00 BSC		
Array Length	D1	8.00 BSC		
Contact Diameter	b	0.35	0.40	0.45

Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2