

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

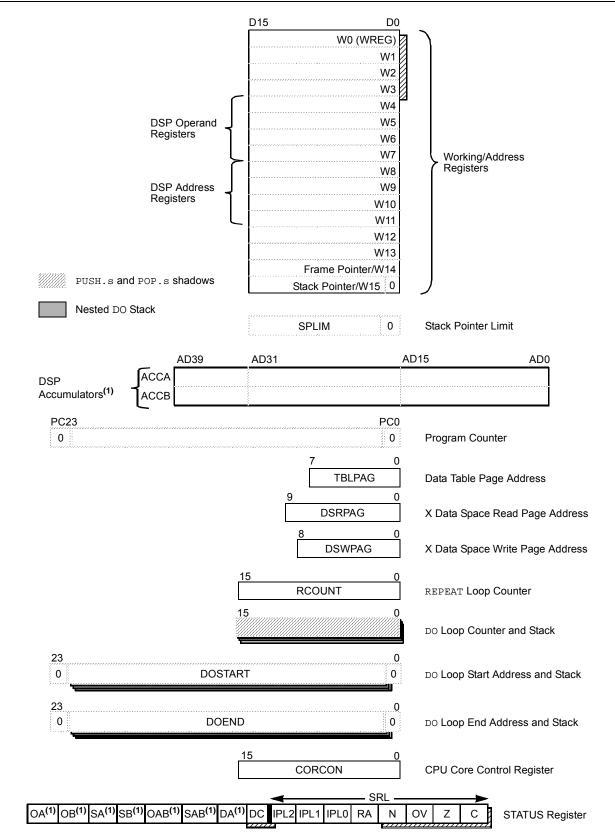
E·XE

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm310-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS


Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN49	Ι	Analog	No	Analog Input Channels 0-49.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	I	ST/ CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	No	32.768 kHz low-power oscillator crystal output.
IC1-IC8	I	ST	Yes	Input Capture Inputs 1 through 8.
OCFA OCFB OC1-OC8	 	ST ST	Yes No Yes	Output Compare Fault A input (for compare channels). Output Compare Fault B input (for compare channels). Output Compare 1 through 8.
INT0		ST	No	External Interrupt 0.
INT1	l i	ST	Yes	External Interrupt 1.
INT2	1	ST	Yes	External Interrupt 2.
INT3	I.	ST	No	External Interrupt 3.
INT4	Ι	ST	No	External Interrupt 4.
RA0-RA4, RA7-RA12, RA14-RA15	I/O	ST	Yes	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.
RD1-RD6, RD8, RD12-RD15	I/O	ST	Yes	PORTD is a bidirectional I/O port.
RE0-RE1, RE8-RE9, RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.
RF0-RF1, RF4-RF7, RF9-RF10, RF12-RF13	I/O	ST	No	PORTF is a bidirectional I/O port.
RG0-RG3, RG6-RG15	I/O	ST	Yes	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK		ST	Yes	Timer2 external clock input.
T3CK		ST	No	Timer3 external clock input.
T4CK T5CK		ST ST	No No	Timer4 external clock input.
T6CK		ST	NO	Timer5 external clock input. Timer6 external clock input.
T7CK		ST	No	Timer7 external clock input.
T8CK	l i	ST	No	Timer8 external clock input.
T9CK	i	ST	No	Timer9 external clock input.
Legend: CMOS = CM ST = Schmit	tt Trigg	mpatible er input v	vith CN	or output Analog = Analog input P = Power IOS levels O = Output I = Input
PPS = Perip				TTL = TTL input buffer es. For more information. see the " Pin Diagrams " section for pin

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

dsPIC33EPXXXGM3XX/6XX/7XX

TABLE 4-41: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	—	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	—	_	_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	_	_	_	_	CVRR1	VREFSEL	—	_	CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_	—	CCH1	CCH0	0000
CM1MSKSRC	0A86	-	-	_		SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	_	_	_	_	_	—	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_	—	CCH1	CCH0	0000
CM2MSKSRC	0A8E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0A90	HLMS	-	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	-	-	_		_	_	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0A94	CON	COE	CPOL		_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0A96	-	-	_		SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0A98	HLMS	-	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_	_	_	_	_	_	—	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM4MSKSRC	0A9E	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_	_	_	_	_	—	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM5CON	0AA4	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM5MSKSRC	0AA6	_	_	_	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM5MSKCON	0AA8	HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	—		_	_	_		—	_	—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CVR2CON	0AB4	—	_	_	_	CVRR1	VREFSEL	_	_	CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGM3XX/6XX/7XX

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_		VREGSF	_	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readal	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
hit 1E		Deast Flag bit					
bit 15	-	Reset Flag bit onflict Reset has	occurred				
		onflict Reset has		d			
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized	W Access Rese	et Flag bit		
	1 = An illega	al opcode detec	tion, an illeg	gal address mo	de or Uninitial	ized W registe	er used as a
		Pointer caused		Dogistor Dogot k	an not anourra	d	
bit 13-12	-	l opcode or Unir		Register Reset r	las not occurre	u	
bit 11	•	i ted: Read as '0 ash Voltage Reg		by During Sloop	, bit		
		Itage regulator i			זומ מ		
		Itage regulator			ing Sleep		
bit 10	Unimplemen	ted: Read as '0	,	-			
bit 9	CM: Configur	ation Mismatch	Flag bit				
	•	uration Mismatcl					
	•	uration Mismatcl					
bit 8		age Regulator S					
		egulator is activ					
bit 7	-	nal Reset (MCLF	-	node during Sie	eb.		
		Clear (pin) Res	,	red			
		Clear (pin) Res					
bit 6	SWR: Softwa	IRE RESET (Instru	uction) Flag	bit			
		instruction has l					
		instruction has i					
bit 5		oftware Enable/[Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
bit 4		hdog Timer Tim	e-out Elag bi	it			
with i		e-out has occurr	-				
		e-out has not oc					
	All of the Reset sta cause a device Re		set or cleare	d in software. S	etting one of th	ese bits in soft	ware does no
2:	f the FWDTEN Co	onfiguration bit is	s '1' (unprog	rammed), the W	/DT is always e	nabled, regard	lless of the

RCON: RESET CONTROL REGISTER⁽¹⁾ **REGISTER 6-1:**

e сy SWDTEN bit setting.

NOTES:

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	_	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	<u> </u>	—			_	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		med SPIx Suppo		_			
			•	cpin is used as	the Frame Sy	nc pulse input/or	utput)
1.11.4.4		SPIx support is o					
bit 14		x Frame Sync F		on Control bit			
		/nc pulse input (/nc pulse output					
bit 13	-	ame Sync Pulse	. ,				
		/nc pulse is activ	,				
		/nc pulse is activ	U U				
bit 12-2	Unimplemen	ted: Read as '0	,				
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	t bit			
		/nc pulse coinci					
	-	nc pulse preced					
bit 0		x Enhanced Bu		bit			
		d Buffer is enabl		d modo)			
		d Buffer is disab	ieu (Standan	u moue)			

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	1 = Receive buffer has data, at least one more character can be read0 = Receive buffer is empty

Note 1: Refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) for information on enabling the UART module for transmit operation.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL	_	—		SEG2PH2	SEG2PH1	SEG2PH0
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	S SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as ')'				
bit 14	WAKFIL: Se	lect CAN Bus L	ne Filter for V	/ake-up bit			
		N bus line filter					
		line filter is not		e-up			
bit 13-11	Unimplemer	nted: Read as ')'				
bit 10-8		0>: Phase Segr	nent 2 bits				
	111 = Length	h is 8 x Tq				PRSEG1	
	•						
	•						
	000 = Lengt ł	h is 1 x Tq					
bit 7		Phase Segmer	nt 2 Time Sele	ct bit			
	1 = Freely pr 0 = Maximun	ogrammable n of SEG1PHx I	oits or Informa	tion Processin	g Time (IPT), w	/hichever is gre	ater
bit 6	SAM: Sampl	e of the CAN B	us Line bit				
		is sampled three					
		is sampled once	-	e point			
bit 5-3		0>: Phase Segr	nent 1 bits				
	111 = Length •	IS 8 X IQ					
	•						
	•						
	000 = Length						
bit 2-0		>: Propagation	Time Segmen	t bits			
	111 = Lengt	n IS 8 X I Q					
	•						
	•						
	• • • 000 = Lengtł						

REGISTER 21-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUL	<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<7:0>			
bit 7							bit 0
							,
Legend:		C = Writable	oit, but only '0'	can be written	to clear the bit		

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend:		C = Writable b	it, but only '()' can be written	to clear the bi	it	
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG					
pit 15						L	bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	—	—	—	—	—					
pit 7							bit (
o er o ro d i												
-egend:	, hit	W - Writchlo h			aantad hit raad	aa '0'						
R = Readable n = Value at		W = Writable b '1' = Bit is set	It	0 = Onimplen	nented bit, read	x = Bit is unkn						
n = value at	PUR	I = DILIS SEL			areu		JWII					
oit 15		TMI I Enable bit										
	CTMUEN: CTMU Enable bit 1 = Module is enabled											
	1 = Module is enabled 0 = Module is disabled											
oit 14	Unimpleme	nted: Read as '0'										
oit 13	CTMUSIDL:	CTMU Stop in Id	le Mode bit									
		nues module ope		device enters lo	lle mode							
	0 = Continues module operation in Idle mode											
pit 12	TGEN: Time Generation Enable bit											
		edge delay gene s edge delay gene										
pit 11	EDGEN: Edge Enable bit											
	1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)											
	0 = Software is used to trigger edges (manual set of EDGxSTAT)											
pit 10	EDGSEQEN	: Edge Sequence	e Enable bit									
	1 = Edge 1 event must occur before Edge 2 event can occur											
	0 = No edge sequence is needed											
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾ 1 = Analog current source output is grounded											
	•	current source ou										
oit 8	-	Cx Trigger Contr		Janaca								
		riggers ADCx sta		n								
		loes not trigger A										
oit 7-0		nted: Read as '0'										
				n n nito n i n n n t	the meetic all the state							
		ile Sample-and-H on cycles. Any sc										

sample/conversion cycles. Any software using the ADCx as part of a capacitance measurement must discharge the ADCx capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADCx must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽³⁾
	11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
	10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity):
	High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity):
	Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled.
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Inverting input of op amp/comparator connects to CxIN4- pin 10 = Inverting input of op amp/comparator connects to CxIN3- pin 01 = Inverting input of op amp/comparator connects to CxIN2- pin
Note 1:	00 = Inverting input of op amp/comparator connects to CxIN1- pin
NULE I.	I IIIVUIA ILIAI ALE AEIEVIEU ALU IIVI AVAIIAVIE WIIIVE IIEVIIVIVAA. AEE ILIE IE III VIAVIAIIIS I SECIIVII IVI AVAIIAVIE

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN15 PTEN14 PTEN<13:8>									
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		PTEN	<7:2>			PTEN	l<1:0>		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable bit		U = Unimplem	nented bit, read	l as '0'			
-n = Value at	t Reset	'1' = Bit is set '0' = Bit is			cleared x = Bit is unknown				
bit 15	PTEN15: PMCS2 Strobe Enable bit								
	1 = PMA15 functions as either PMA<15> or PMCS2								
	0 = PMA15 ft	unctions as por	t I/O						
bit 14	PTEN14: PM	ICS1 Strobe En	able bit						
		unctions as eith	••••••••••••••••	or PMCS1					
0 = PMA14 functions as port I/O									
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits								
		2> function as2> function as		lines					
bit 1-0	PTEN<1:0>:	PMALH/PMALI	L Strobe Enab	le bits					

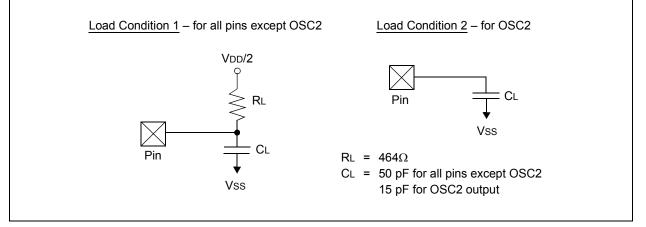
1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER⁽¹⁾

Note 1: This register is not available on 44-pin devices.

0 = PMA1 and PMA0 function as port I/Os

© 2013-2014 Microchip Technology Inc.


33.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXXGM3XX/6XX/ 7XX AC characteristics and timing parameters.

TABLE 33-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended Operating voltage VDD range as described in Section 33.1 "DC Characteristics ".

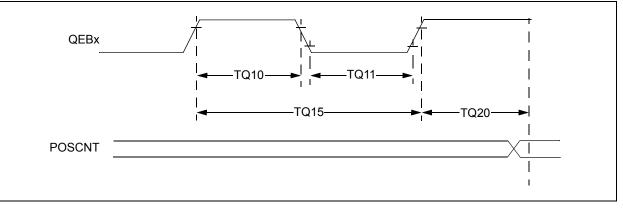

FIGURE 33-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 33-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

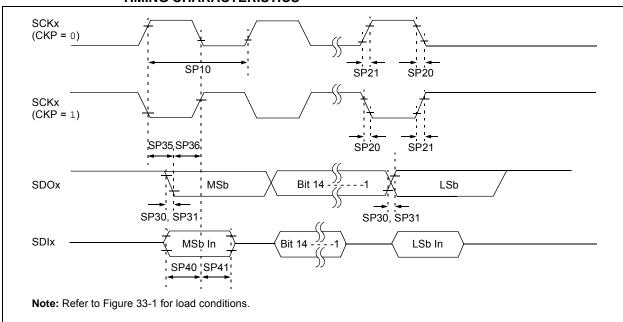

FIGURE 33-12: TIMERQ (QEIX MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 33-29: QEIX MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15	
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	_	ns		
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	1	Тсү	—		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-35:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Condition					
SP10	FscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

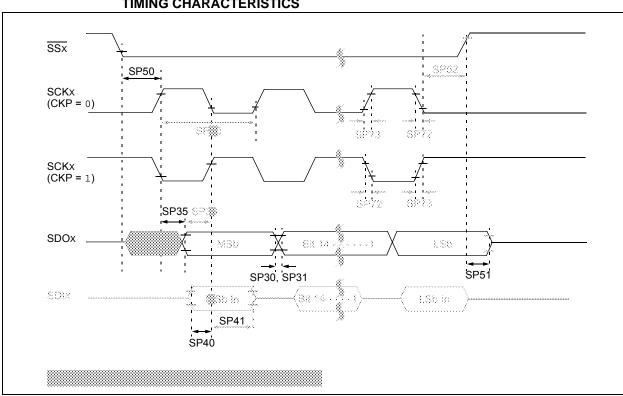


FIGURE 33-21: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

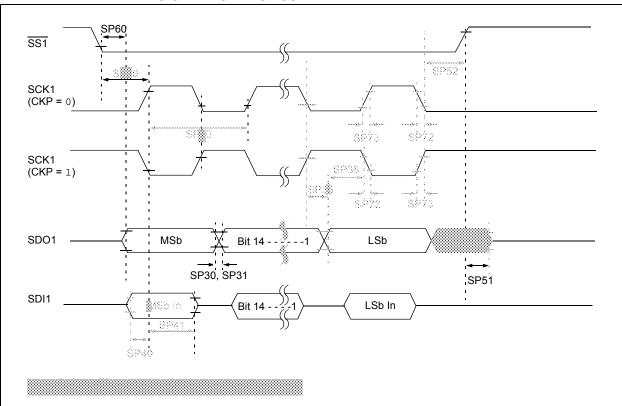


FIGURE 33-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

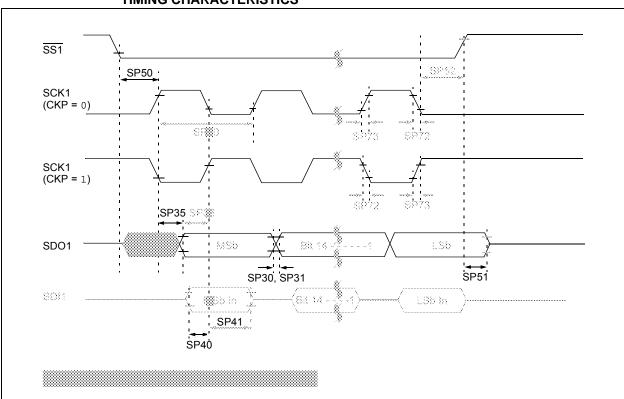


FIGURE 33-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

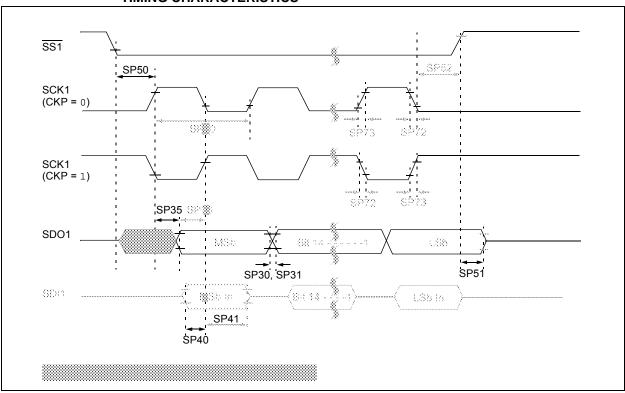


FIGURE 33-30: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. U			Conditions	
		ADC Ac	curacy (1	2-Bit Mo	ode) – Vr	REF-		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits		
AD21a	INL	Integral Nonlinearity	-3	_	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)	
AD22a	DNL	Differential Nonlinearity	≥ 1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)	
AD23a	Gerr	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)	
AD24a	EOFF	Offset Error	-5	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)	
AD25a	—	Monotonicity	_	_	—		Guaranteed	
		Dynamic	c Perform	nance (1	2-Bit Mo	de)		
AD30a	THD	Total Harmonic Distortion	_		-75	dB		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB		
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB		
AD33a	Fnyq	Input Signal Bandwidth	_	_	250	kHz		
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits		

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.