

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm310t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	BND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/ 7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Program Memory" (DS70613), which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGM3XX/6XX/7XX family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGM3XX/6XX/7XX devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-3.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP128GM3XX/6XX/7XX DEVICES⁽¹⁾

TABLE 4-35: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL			RPDF	URERR		_	—		NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A								NVMAD	R<15:0>								0000
NVMADRU	072C	_	_	_	_	_	_	_	-				NVMAD	RU<23:16>	>			0000
NVMKEY	072E	_	_	_	_	_	_	_	-				NVM	(EY<7:0>				0000
NVMSRCADRL	0730							NVMS	SRCADR<	15:1>							0	0000
NVMSRCADRH	0732												NVMSRC	ADRH<23:1	6>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	VREGSF	—	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0030
PLLFBD	0746	—	—	_	—	—	_	_				Pl	_LDIV<8:0>					0030
OSCTUN	0748	_	_		_	—	_	_	_	_	_			TUN	I<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the configuration fuses.

TABLE 4-37: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_		1			_			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms; it is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XB value is scaled accordingly to
	generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Addressing	and	Bit-Rev	ersed
	Addressi	ing can be er	abled s	simultane	ously
	using the	e same W regi	ster, bu	it Bit-Rev	ersed
	Addressi	ing operatio	n will	always	take
	preceder	nce for data w	rites w	hen enab	oled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-17: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	—	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—		—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	Iown
bit 15	ROON: Refer	ence Oscillato	r Output Enab	ole bit	(2)		
	1 = Reference	e oscillator out	out is enabled	on the REFCL	.K pin ⁽²⁾		
L:4 4	0 = Reference	e oscillator outp	out is disabled	1			
DIL 14		ference Opeille	U Har Dun in Sk	aan hit			
DIL 13	1 - Poforonov	erence Oscilla	nor Run in Sie	to run in Sloon			
	0 = Reference	e oscillator out	out is disabled	d in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator	crystal is used	as the refere	nce clock			
	0 = System cl	lock is used as	the reference	eclock			
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
	1111 = Refer	ence clock divi	ded by 32,76	8			
	1110 = Refer	ence clock divi ence clock divi	ded by 16,384 ded by 8 192	4			
	1100 = Refer	ence clock divi	ded by 4,096				
	1011 = Refer	ence clock divi	ded by 2,048				
	1010 = Refer	ence clock divi	ded by 1,024				
	1001 = Refer	ence clock divi ence clock divi	ded by 512 ded by 256				
	0111 = Refer	ence clock divi	ded by 128				
	0110 = Refer	ence clock divi	ded by 64				
	0101 = Refer	ence clock divi	ded by 32				
	0100 = Refer	ence clock divi	ded by 16				
	0010 = Refer	ence clock divi	ded by 4				
	0001 = Refer	ence clock divi	ded by 2				
	0000 = Refer	ence clock					
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment		Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1001	I/O	RP41		101 0101	—	_
010 1010	I/O	RP42		101 0110	—	_
010 1011	I/O	RP43		101 0111	—	_
101 1000	_	—		110 1100	—	—
101 1001		—		110 1101	—	—
101 1010	—	—		110 1110	—	_
101 1011				110 1111		—
101 1100		—		111 0000	I	RPI112
101 1101		—		111 0001	I/O	RP113
101 1110	I	RPI94		111 0010	—	—
101 1111	I	RPI95		111 0011	_	—
110 0000	I	RPI96		111 0100	—	—
110 0001	I/O	RP97		111 0101		—
110 0010		—		111 0110	I/O	RP118
110 0011		—		111 0111	I	RPI119
110 0100				111 1000	I/O	RP120
110 0101		—		111 1001	I	RPI121
110 0110		—		111 1010	—	—
110 0111		—		111 1011	—	—
110 1000	_	_] [111 1100	Ι	RPI124
110 1001	—	_]	111 1101	I/O	RP125
110 1010	—			111 1110	I/O	RP126
110 1011	—	_		111 1111	I/O	RP127
Logond: Shaded row	indicato	DDS Input register valu	ioc tha	t are unimplomented		

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

REGISTER 11-34: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP43R•	<5:0>		
bit 15		·					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP42R	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unki	nown
bit 15-14	Unimpleme	ented: Read as '	0'				
bit 13-8	RP43R<5:0	>: Peripheral Ou	Itput Function	n is Assigned to R	P43 Output	Pin bits	

Unimplemented: Read as '0'
RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

(see Table 11-3 for peripheral function numbers)

REGISTER 11-35: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP49R	<5:0>		
bit 15		·					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP48R	<5:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown
<u></u>							
1 11 A E A A			~ '				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 11-3 for peripheral function numbers)

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as eight independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 and Timer8 are the least significant word (Isw); Timer3, Timer5, Timer7 and Timer9 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON register control bits are ignored. Only T2CON, T4CON, T6CON and T8CON register control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Timer7 and Timer9 interrupt flags.

A block diagram for an example of a 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 **FLTMD FLTOUT FLTTRIEN** OCINV ___ OC32 ____ ____ bit 15 bit 8 R/W-0 R/W-0, HS R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 OCTRIG **OCTRIS** SYNCSEL4 SYNCSEL2 TRIGSTAT SYNCSEL3 SYNCSEL1 SYNCSEL0 bit 7 bit 0 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is cleared in software and a new PWM period starts 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts bit 14 FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault bit 13 FLTTRIEN: Fault Output State Select bit 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition bit 12 OCINV: OCx Invert bit 1 = OCx output is inverted 0 = OCx output is not inverted bit 11-9 Unimplemented: Read as '0' bit 8 OC32: Cascade Two OCx Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled bit 7 OCTRIG: OCx Trigger/Sync Select bit 1 = Triggers OCx from source designated by the SYNCSELx bits 0 = Synchronizes OCx with source designated by the SYNCSELx bits bit 6 **TRIGSTAT:** Timer Trigger Status bit 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear bit 5 OCTRIS: OCx Output Pin Direction Select bit 1 = Output Compare x is tri-stated 0 = Output Compare x module drives the OCx pin **Note 1:** Do not use the OCx module as its own synchronization or trigger source. 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it. 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO4 = OC1, OC5PTGO5 = OC2, OC6PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

-							
U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7	-		•			-	bit C
Legend:		HS = Hardware	e Settable bit	C = Clearable	e bit		
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	כ'				
bit 13	PCHEQIRQ	: Position Count	er Greater Tha	n or Equal Cor	npare Status bi	t	
	1 = POSxCN	NT ≥ QEIxGEC					
	0 = POSxCN	NT < QEIXGEC					
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt	is enabled					
b :+ 44			ar Loop Thom o		are Otetus hit		
			er Less Than o	r Equal Compa	are Status bit		
	1 = POSXCN 0 = POSXCN	T = QEIXLEC					
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	are Interrupt En	able bit	
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					
bit 9	POSOVIRQ	: Position Count	er Overflow Sta	atus bit			
	1 = Overflow	has occurred					
		now has occurre					
DIT 8	POSOVIEN:	Position Counter	er Overflow Int	errupt Enable t	DIT		
	\perp = Interrupt	is disabled					
bit 7	PCIIRQ: Pos	sition Counter (F	lomina) Initializ	vation Process	Complete Stati	us hit(1)	
SICT	1 = POSxCN	NT was reinitializ	ed		Complete clat		
	0 = POSxCN	NT was not reinit	ialized				
bit 6	PCIIEN: Pos	sition Counter (H	loming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					
bit 5	VELOVIRQ:	Velocity Counte	er Overflow Sta	tus bit			
	1 = Overflow	v has occurred	d				
bit 4			u r Ovorflow Inte	rrunt Enghla b	:+		
DIL 4	1 = Interrunt			enupt Enable b	IL .		
	0 = Interrupt	is disabled					
bit 3	HOMIRQ: S	tatus Flag for Ho	ome Event Stat	us bit			
	1 = Home ev	vent has occurre	d				
	0 = No home	e event has occu	urred				

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	i as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000-11111	1 = Reserved					
	•						
	•						
	•	vr 1					
	00001 - Filte	er O					
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	ICODE<6:0>:	: Interrupt Flag	Code bits				
	1000101-111	11111 = Reser	ved				
	1000100 = F	IFO almost full	interrupt				
	1000011 = R	leceiver overflo	w interrupt				
	1000010 = K 1000001 = E	rror interrupt	μ				
	1000000 = N	lo interrupt					
	•						
	•						
	0010000-011	11111 = Rese r	ved				
	0001111 = R	B15 buffer inte	errupt				
	•						
	•						
	0001001 = R	B9 buffer inter	rupt				
	0001000 = R	B8 buffer inter	rupt				
	0000111 = 1 0000110 = T	RB7 Duffer inte RB6 buffer inte	errupt				
	0000101 = T	RB5 buffer inte	errupt				
	0000100 = T	RB4 buffer inte	errupt				
	0000011 = T	RB3 buffer inte	errupt				
	0000010 = 1	RB1 buffer inte	errupt				
	0000000 = T	RB0 buffer inte	errupt				

REGISTER 21-3: CxVEC: CANx INTERRUPT CODE REGISTER

REGISTER 21-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0			
bit 15							bit 8			
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0			
bit 7 bit 0										
Legend:	1.11									
R = Readable	bit	W = Writable	bit		mented bit, read	d as '0'				
-n = value at i	JOR	" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	nown			
bit 15-8	See Definition	n for bits 7-0 co	ontrols Buffer	n						
bit 7	TXENm: TX/	RX Buffer Seleo	ction bit							
	1 = Buffer, TF	RBn, is a transn	nit buffer							
	0 = Buffer, TF	RBn, is a receiv	e buffer							
bit 6	TXABTm: Me	essage Abortec	l bit ⁽¹⁾							
	1 = Message	was aborted		ooofully						
bit 5	TYL APRm: N		rhitration hit(1)						
DIL J	1 = Message	lost arbitration	while being s	ent						
	0 = Message	did not lose arl	pitration while	being sent						
bit 4	TXERRm: Er	ror Detected D	uring Transmi	ssion bit ⁽¹⁾						
	1 = A bus erro	or occurred whi	ile the messa	ge was being s	ent					
h :+ 0	0 = A bus erro	or did not occui	while the me	ssage was be	ing sent					
DIT 3		essage Send R	equest bit		, cloars when th	o mossago is su	lococofully cont			
	0 = Clearing	the bit to '0' wh	ile set reques	sts a message	abort	e message is su	iccessiuily sent			
bit 2	RTRENm: Au	uto-Remote Tra	nsmit Enable	bit						
	1 = When a re	emote transmit	is received, T	XREQx will be	e set					
	0 = When a re	emote transmit	is received, T	XREQx will be	e unaffected					
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pr	iority bits						
	11 = Highest 10 = High interview	message priori	ty sade priority							
	01 = Low inte	ermediate mess	age priority							
	00 = Lowest I	message priorit	y							

Note 1: This bit is cleared when TXREQx is set.

Note: The buffers, SIDx, EIDx, DLCx, Data Field, and Receive Status registers, are located in DMA RAM.

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RSE	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RSE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 RSE<15:0>: DCI Receive Slot Enable bits

1 = CSDI data is received during Individual Time Slot n

0 = CSDI data is ignored during Individual Time Slot n

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TSE<15:8>										
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			TSE	<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				

bit 15-0 TSE<15:0>: DCI Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during Individual Time Slot n

0 = CSDO pin is tri-stated or driven to logic '0' during the individual time slot, depending on the state of the CSDOM bit

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	—	—	CVRR1	VREFSEL	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11	CVRR1: Com	parator Voltage	e Reference F	Range Selectio	n bit		
	See bit 5.						
bit 10	VREFSEL: Vo	oltage Referen	ce Select bit				
	1 = CVREFIN = 0 = CVREFIN i	= VREF+ s generated by	the resistor r	etwork			
hit 9-8		ted: Read as '	n'	ictwork			
bit 7	CVREN: Corr	narator Voltag	o Reference F	-nahla hit			
Dit 7	1 = Comparat	or voltage refe	rence circuit is				
	0 = Comparat	or voltage refe	rence circuit is	s powered dov	vn		
bit 6	CVROE: Corr	parator Voltag	e Reference (Output Enable	on CVREF10 Pir	n bit	
	1 = Voltage le	vel is output or	n the CVREF10	o pin			
	0 = Voltage le	vel is disconne	ected from the	CVREF10 pin			
bit 11, 5	CVRR<1:0>:	Comparator Vo	oltage Referer	nce Range Sel	ection bits		
	11 = 0.00 CV	RSRC to 0.94, v	vith CVRSRC/1	6 step-size			
	10 = 0.33 CV	RSRC 10 0.96, M	vith CVRSRC/2	4 step-size			
	00 = 0.25 CV	RSRC to 0.75, v	vith CVRSRC/3	2 step-size			
bit 4	CVRSS: Com	parator Voltage	e Reference S	Source Selection	on bit		
	1 = Comparat	or voltage refe	rence source,	CVRSRC = CV	/REF+ – AVSS		
	0 = Comparat	or voltage refe	rence source,	CVRSRC = AV	'DD – AVSS		
bit 3-0	CVR<3:0> Co	omparator Volta	age Reference	e Value Selecti	ion $0 \le CVR < 3:C$)> ≤ 15 bits	
	When CVRR	$\frac{(1:0)}{(1:0)} = \frac{11:}{(1:0)}$					
		(1.0) = 10	VRSRC)				
	$\frac{\text{VHerr} \text{CVREF}}{\text{CVREF}} = (1/3)$	\bullet (CVRSRC) +	(CVR<3:0>/2	4) • (CVRSRC)			
	When CVRR	<1:0> = 01:	· ·	, (,			
	CVREF = (CVI	R< <u>3:0>/24)</u> • (0	CVRSRC)				
	When CVRR	< <u>1:0> = 00:</u>					
	CVREF = (1/4)	• (CVRSRC) +	(CVR<3:0>/3	2) • (CVRSRC)			

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PTEN15	PTEN14			PTEN	<13:8>						
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		PTEN	 <7:2>			PTEN	I <1:0>				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	at Reset	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15	PTEN15: PM	1CS2 Strobe En	able bit								
	1 = PMA15 f	unctions as eith	er PMA<15> c	or PMCS2							
	0 = PMA15 f	unctions as port	t I/O								
bit 14	PTEN14: PM	ICS1 Strobe En	able bit								
	1 = PMA14 f	unctions as eith	er PMA<14> c	or PMCS1							
	0 = PMA14 f	unctions as port	t I/O								
bit 13-2	PTEN<13:2>	PTEN<13:2>: PMP Address Port Enable bits									
	1 = PMA<13 0 = PMA<13	:2> function as :2> function as	PMP address port I/Os	lines							
bit 1-0	PTEN<1:0>:	PMALH/PMALI	L Strobe Enabl	le bits							

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER⁽¹⁾

Note 1: This register is not available on 44-pin devices.

0 = PMA1 and PMA0 function as port I/Os

© 2013-2014 Microchip Technology Inc.

TABLE 33-59: ADCx CONVERSION (1	2-BIT MODE) TIMING REQUIREMENTS
---------------------------------	---------------------------------

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions					
	Clock Parameters											
AD50	Tad	ADCx Clock Period	117.6			ns						
AD51	tRC	ADCx Internal RC Oscillator Period	_	250		ns						
	Conversion Rate											
AD55	tCONV	Conversion Time	_	14 Tad		ns						
AD56	FCNV	Throughput Rate	_	—	500	ksps						
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	3 Tad	_	_	-						
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	3 Tad	—	_	_						
		Timin	g Parame	ters								
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	_	3 Tad		Auto-convert trigger is not selected					
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	_	3 Tad	_						
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD		_						
AD63	tDPU	Time to Stabilize Analog Stage from ADCx Off to ADCx On ⁽¹⁾	—	_	20	μS	(Note 3)					

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

3: The parameter, tDPU, is the time required for the ADCx module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADCx result is indeterminate.

4: These parameters are characterized, but not tested in manufacturing.

http://www.microchip.com/packaging D А В Ν 2 NOTE 1 -Е (DATUM B) (DATUM A) 0.20 C 2Х TOP VIEW 0.20 С // 0.10 C A1 С SEATING 000000000 ௱௱ PLANE A3 □ 0.08 C SIDE VIEW ⊕ 0.10∭ C A в D2 ⊕ 0.10∭ C A B E2 NOTE 1 2 1 Ν 44 X b 0.07MCAB |e| Φ 0.05M С **BOTTOM VIEW**

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2