

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm604-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

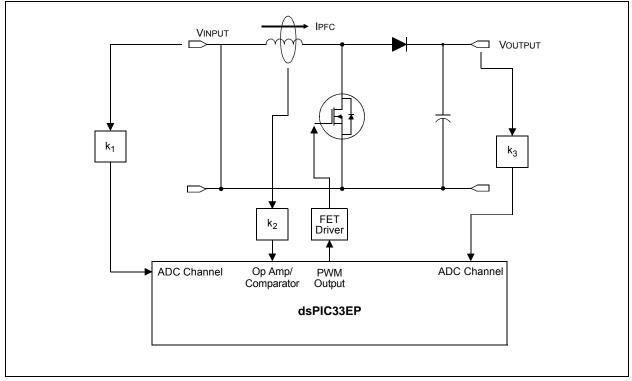
2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers
- Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

IABLE 4	+-/.	PIG REGISTER MAP																
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWDTO	_	—	—	—	PTGITM1	PTGITM0	0000
PTGCON	0AC2	PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0	PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	_	PTGWDT2	PTGWDT1	PTGWDT0	0000
PTGBTE	0AC4	ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6				•			•	PTGł	HOLD<15:0>		•		•	•			0000
PTGT0LIM	0AC8								PTG	OLIM<15:0>								0000
PTGT1LIM	0ACA								PTG	TLIM<15:0>								0000
PTGSDLIM	0ACC								PTGS	SDLIM<15:0>								0000
PTGC0LIM	0ACE								PTGC	COLIM<15:0>								0000
PTGC1LIM	0AD0								PTGC	C1LIM<15:0>								0000
PTGADJ	0AD2								PTG	ADJ<15:0>								0000
PTGL0	0AD4								PT	GL0<15:0>								0000
PTGQPTR	0AD6			_	—			_	—	—	—	—		F	PTGQPTR<4	:0>		0000
PTGQUE0	0AD8		STEP1<7:0> STEP0<7:0>							0000								
PTGQUE1	0ADA				STEP3	<7:0>							STEP2	<7:0>				0000
PTGQUE2	0ADC				STEP5	<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP7	<7:0>							STEP6	<7:0>				0000
PTGQUE4	0AE0				STEP9	<7:0>							STEP8	<7:0>				0000
PTGQUE5	0AE2				STEP11	<7:0>							STEP10	<7:0>				0000
PTGQUE6	0AE4				STEP13	<7:0>							STEP12	2<7:0>				0000
PTGQUE7	0AE6				STEP15	i<7:0>							STEP14	<7:0>				0000
PTGQUE8	0x0AE8				STEP17	<7:0>							STEP16	6<7:0>				0000
PTGQUE9	0x0AEA				STEP19	<7:0>							STEP18	<7:0>				0000
PTGQUE10	0x0AEC				STEP21	<7:0>							STEP20	<7:0>				0000
PTGQUE11	0x0AEE				STEP23	<7:0>							STEP22	2<7:0>				0000
PTGQUE12	0x0AF0				STEP25	<7:0>							STEP24	<7:0>				0000
PTGQUE13	0x0AF2	STEP27<7:0> STEP26<7:0> 00								0000								
PTGQUE14	0x0AF4				STEP29	<7:0>							STEP28	<7:0>				0000
PTGQUE15	0x0AF6				STEP31	<7:0>							STEP30	<7:0>				0000

TABLE 4-7: PTG REGISTER MAP

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: PWM REGISTER MAP

SFR Name Add	ddr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON 0C	C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2 0C	C02	PCLKDIV<2:0>												0000				
PTPER 0C	C04	PTPER<15:0>											00F8					
SEVTCMP 0C	C06									SEVTCM	1P<15:0>							0000
MDC 0C	C0A									MDC<	:15:0>							0000
STCON 0C	C0E	—	—	Ι	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2 0C	C10	—	—	_	_	—	—	_	_			—	—	_	F	PCLKDIV<2:0	>	0000
STPER 0C	C12									STPER	<15:0>							0000
SSEVTCMP 0C	C14									SSEVTCI	MP<15:0>							0000
CHOP 0C	C1A C	CHPCLKEN	—	_	_	_	—	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000
PWMKEY 0C	C1E	1E PWMKEY<15:0> 0000											0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: **PWM GENERATOR 1 REGISTER MAP**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0C26								PDC	:1<15:0>								FFF8
PHASE1	0C28								PHAS	E1<15:0>								0000
DTR1	0C2A	_	_							DTR1	l<13:0>							0000
ALTDTR1	0C2C	_	_							ALTDT	R1<13:0>							0000
SDC1	0C2E								SDC	:1<15:0>								0000
SPHASE1	0C30								SPHAS	SE1<15:0>								0000
TRIG1	0C32								TRGC	MP<15:0>								0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	_	—	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP1	0C38								PWMC	AP1<15:0>								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_	—	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	_	-		•	•			LEB<	<11:0>			•	•	•	0000
AUXCON1	0C3E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
Legend:	= u	nimplement	ed, read as	s '0'. Reset	values are	shown in hexa	decimal.	•	•		•							<u> </u>

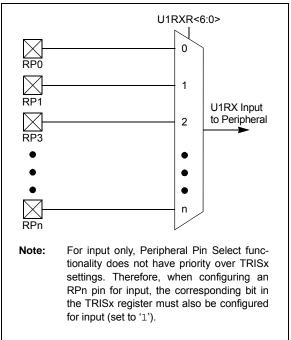
DS70000689D-page 57

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP		—		—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
1							
Legend:	1- 1-14		- :4			(0)	
R = Readab		W = Writable I	JIC	-	mented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		ntorrunt Enchla	hit				
DIC 15		nterrupt Enable and associate		re enabled			
		are disabled, t					
bit 14	DISI: DISI In	struction Statu	s bit				
		truction is active					
		truction is not a					
bit 13		oftware Trap Sta					
		trap is enabled trap is disabled					
bit 12-3		ted: Read as '					
bit 2	-			t Polarity Selec	t bit		
		on negative edg	•	,			
	0 = Interrupt o	on positive edg	e				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detec	t Polarity Selec	t bit		
		on negative edg					
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detec	t Polarity Selec	t bit		
		on negative edg					
	0 = Interrupt o	on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD					
bit 15							bit					
R/W-0	R/W-0		R/W-0	R/W-0		R/W-0	R/W-0					
	-	R/W-0	-	-	R/W-0 C2MD ⁽¹⁾	C1MD ⁽¹⁾	-					
l2C1MD bit 7	U2MD	U1MD	SPI2MD	SPI1MD	CZIVID	CIMDO	AD1MD bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	TEMD. Timor	5 Module Disal	alo hit									
DIC 15		odule is disable										
		odule is enable										
bit 14	T4MD: Timer	4 Module Disal	ole bit									
	1 = Timer4 m	odule is disable	ed									
	0 = Timer4 m	odule is enable	ed									
bit 13	T3MD: Timer	3 Module Disal	ole bit									
		odule is disabl										
		odule is enable										
bit 12	T2MD: Timer2 Module Disable bit											
	1 = Timer2 module is disabled 0 = Timer2 module is enabled											
L:1 44												
bit 11	_	1 Module Disal										
	-	odule is disable odule is enable										
bit 10		11 Module Disa										
Sit 10		dule is disabled										
		dule is enabled										
bit 9	PWMMD: PW	/M Module Dis	able bit									
	1 = PWM mo	dule is disable	t									
	0 = PWM mo	dule is enabled	l									
bit 8	DCIMD: DCI	Module Disable	e bit									
		ule is disabled										
bit 7		1 Module Disal	ale hit									
		lule is disabled										
		lule is enabled										
bit 6	U2MD: UART	2 Module Disa	ble bit									
		nodule is disabl										
	-	nodule is enable										
bit 5	U1MD: UART	1 Module Disa	ble bit									
	1 = UART1 m	nodule is disabl	ed									
	0 = UART1 m	odule is enabl	ed									

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1


Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-29). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

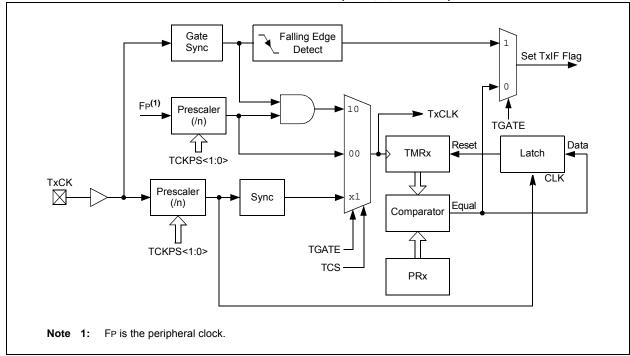
dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 26-1 in Section 26.0 "Op Amp/Comparator Module") and the PTG module (see Section 25.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual connections to the filtered QEIx module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module").

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

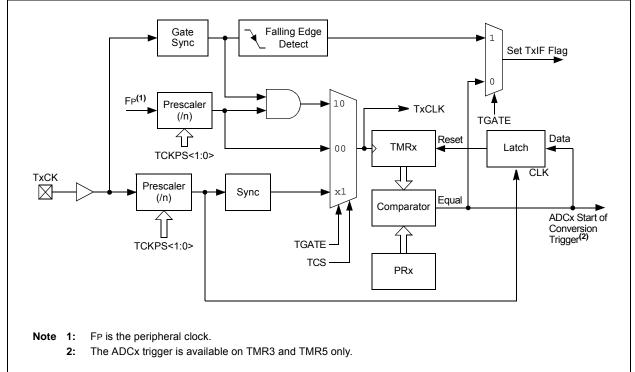
Virtual connection to the QEIx module allows peripherals to be connected to the QEIx digital filter input. To utilize this filter, the QEIx module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEIx digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43


RPINR15 = 0x2500; RPINR7 = 0x009;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */ /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				C2RXR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>			
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	11111100 = • • • • • •	1-2 for input pin nput tied to RPI nput tied to CM nput tied to Vss	124 P1	,			
bit 7		nted: Read as '					
bit 6-0	C10VD-6.0	>: Assign CAN1				Do Dio hito	

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾


Note 1: This register is not available on dsPIC33EPXXXGM3XX devices.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4, 6 AND 8)

U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ____ ____ **BLANKSEL3 BLANKSEL2** BLANKSEL1 **BLANKSEL0** ____ ____ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL2 CHOPSEL1 CHOPHEN CHOPSEL3 CHOPSEL0 CHOPLEN _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as state blank source 0010 = PWM2H is selected as state blank source 0001 = PWM1H is selected as state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (CHOP) the selected PWMx outputs. 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as CHOP clock source 0010 = PWM2H is selected as CHOP clock source 0001 = PWM1H is selected as CHOP clock source 0000 = Chop clock generator is selected as CHOP clock source bit 1 CHOPHEN: PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 16-24: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIIC	<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIIC	23:16>					
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L							

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1

 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

x = Bit is unknown

REGISTER 25-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, reac	l as '0'	

'0' = Bit is cleared

REGISTER 25-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

'1' = Bit is set

-n = Value at POR

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL0	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL	0<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

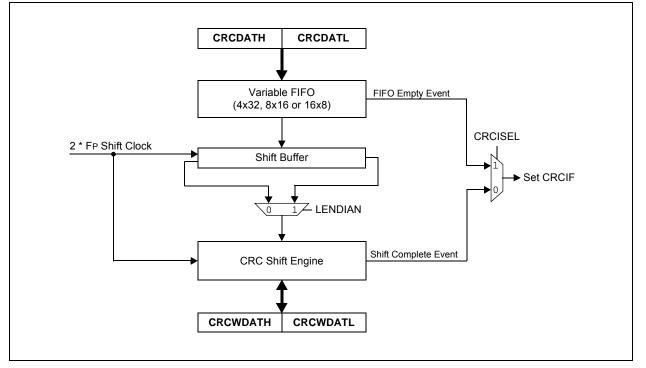
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGADD command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

29.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS70346), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-Programmable (up to 32nd order) polynomial CRC equation
- Interrupt Output
- Data FIFO

The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 29-1. A simple version of the CRC shift engine is shown in Figure 29-2.

FIGURE 29-1: CRC BLOCK DIAGRAM

Field	Description			
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}				
Wn	One of 16 Working registers ∈ {W0W15}			
Wnd	One of 16 Destination Working registers ∈ {W0W15}			
Wns	One of 16 Source Working registers ∈ {W0W15}			
WREG	W0 (Working register used in File register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}			
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}			
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}			
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}			

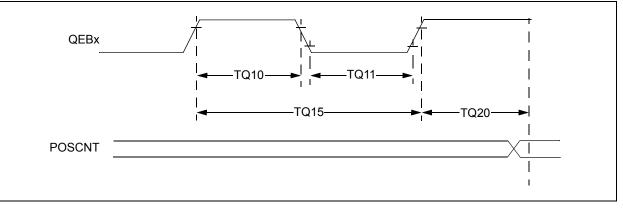
TABLE 33-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	the observation of the conditions: 3.0V to 3.6V to 3.6V otherwise stated) of the temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Тур. ⁽²⁾	Max.	Units	Conditions				
Power-Down Current (IPD) (1)								
DC60d	35	100	μA	-40°C		Base Power-Down Current		
DC60c	40	200	μA	+25°C	3.3V			
DC60b	250	500	μA	+85°C	3.3V			
DC60c	1000	2500	μA	+125°C				
DC61d	8	10	μA	-40°C				
DC61c	10	15	μA	+25°C	2 2)/	Watchdog Timer Current: ΔIwDT ⁽³⁾		
DC61b	12	20	μA	+85°C	3.3V			
DC61c	13	25	μA	+125°C				

Note 1: IPD (Sleep) current is measured as follows:

CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
 external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
 ITAC is disabled
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.


TABLE 33-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING REQUIREMENTS

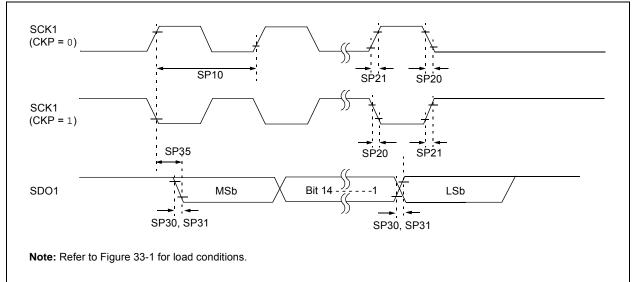
AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max. Units		Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μs			
SY10	Tost	Oscillator Start-up Time		1024 Tosc		_	Tosc = OSC1 period		
SY12	Тwdt	Watchdog Timer Time-out Period	0.85	_	1.15	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C		
			3.4	_	4.6	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs			
SY20	TMCLR	MCLR Pulse Width (low)	2	—	_	μs			
SY30	TBOR	BOR Pulse Width (low)	1	_		μs			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time		—	30	μs			
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	_	—	29	μs			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	70	μs			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 33-12: TIMERQ (QEIX MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 33-29: QEIX MODULE EXTERNAL CLOCK TIMING REQUIREMENTS


АС СН/	ARACTERIS	STICS	S Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extend					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	1	Тсү	—	

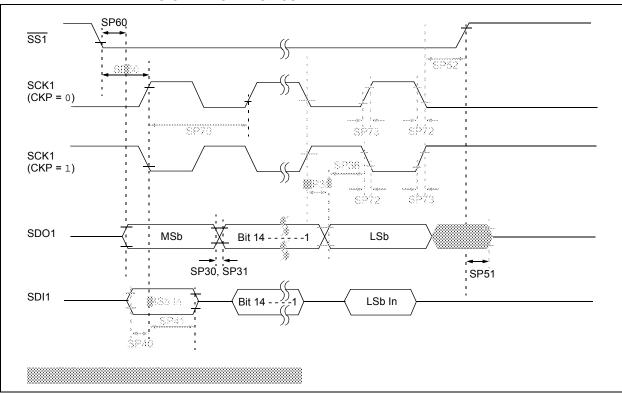

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 33-40: SPIT MAXIMUM DATA/CLOCK RATE SUMMARY	TABLE 33-40:	SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY
---	--------------	--------------------------------------

AC CHARA	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 33-41		_	0,1	0,1	0,1	
25 MHz	—	Table 33-42	—	1	0,1	1	
25 MHz	—	Table 33-43	—	0	0,1	1	
25 MHz	—	—	Table 33-44	1	0	0	
25 MHz	—	—	Table 33-45	1	1	0	
25 MHz	_	_	Table 33-46	0	1	0	
25 MHz	_	_	Table 33-47	0	0	0	

FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 33-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

DC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)	
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)	
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	ІОн ≥ -10 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)	
HDO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)	
			2.0	—	—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)	
			3.0	—	—		ІОн ≥ -2 mA, VDD = 3.3V (Note 1)	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	—	—	V	ІОН ≥ -7.5 mA, VDD = 3.3V (Note 1)	
			2.0	—	—		IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)	
			3.0	—	—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)	

TABLE 34-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

3: Includes the following pins:

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3> **For 64-pin devices:** RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7> **For 100-pin devices:** RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 34-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
-		Program Flash Memory					
HD130	Ер	Cell Endurance	10,000	_	_	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20	_	—	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.