

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm604-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

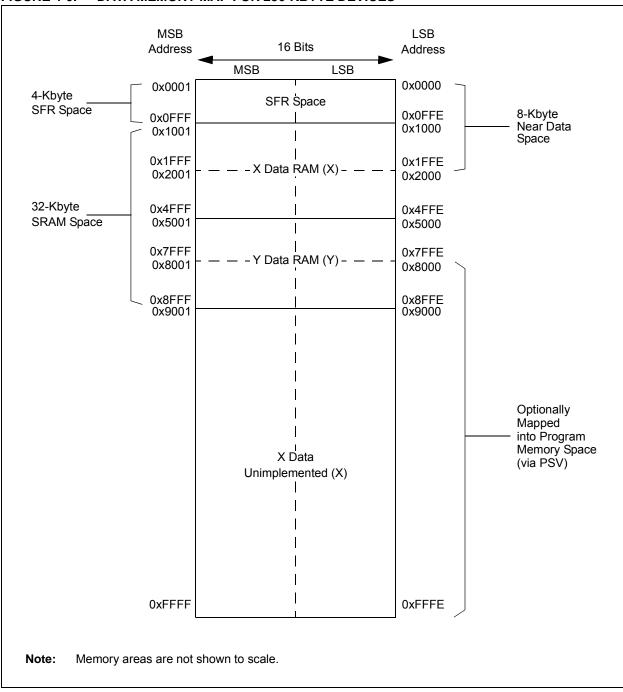


FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000							1	W0 (WR	EG)						I		xxxx
W1	0002											xxxx						
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	0008								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	.H								0000
ACCAU	0026			Się	gn Extensio	n of ACCA<	39>						ACO	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Się	gn Extensio	n of ACCB<	39>						ACO	CBU				0000
PCL	002E			-			Pr	ogram Cour	nter Low Wo	rd Register							—	0000
PCH	0030	_	—	—	_	_	_	—	—	—		Pr	ogram Cou	unter High V	Vord Regist	ter		0000
DSRPAG	0032	_	—	—	—	_	—				Data S	pace Read	l Page Reg	gister				0001
DSWPAG	0034	_	—	—	—	—	—	—			0	Data Space	Write Pag	e Register				0001
RCOUNT	0036	REPEAT Loop Count Register 0							0000									
DCOUNT	0038								DCOUNT<	:15:0>								0000
DOSTARTL	003A							DOS	TARTL<15:1	>							—	0000
DOSTARTH	003C	-		—	—	—	-	_	—	_	—			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1>	>							_	0000
DOENDH	0040	-		—	_	_	-	—	—	_	—			DOEN	DH<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000689D-page 46

TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
--------------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	—	-	—	_	—	_				I2C1 Receiv	ve Register				0000
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							В	aud Rate C	Generator R	egister							0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ess Register					0000
I2C1MSK	020C	_	_	_	_	_	_				12	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	_	_	_	_	_	_	-				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	-				I2C2 Transr	nit Register				OOFF
I2C2BRG	0214							В	aud Rate C	Generator R	egister							0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_	I2C2 Address Register 00						0000				
I2C2MSK	021C		_	—	—	—	_				12	2C2 Address	Mask Regis	ster				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_		—		—	—	—				UART1	Fransmit Re	gister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART1	Receive Re	gister				0000
U1BRG	0228							Ba	ud Rate C	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Fransmit Re	gister				xxxx
U2RXREG	0236	_	—	_	_	—	_	—				UART2	Receive Re	gister				0000
U2BRG	0238						Baud Rate Generator Prescaler 00						0000					

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/W-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾			RPDF	URERR ⁽⁶⁾
bit 15		•					bit
				R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
U-0	U-0	U-0	U-0				
	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit
Legend:		SO = Settab	le Only bit				
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own
oit 15	WR: NVM Wr	te Control bit	(1)				
	1 = Initiates	a Flash mem	ory program o	r erase operati	on; the operati	on is self-timed	and the bit
		•		on is complete			
	-	-	-	ete and inactive			
pit 14	WREN: NVM						
			n/erase operati				
			erase operatio				
oit 13		•	ence Error Flag				
				ce attempt, or te	ermination has c	occurred (bit is s	et automatical
	•	et attempt of th	,	pleted normally			
bit 12			e Control bit ⁽²⁾	-			
JILIZ				ndby mode duri	aa Idla mada		
			is active durin		ly lule mode		
bit 11-10	Unimplemen			ig falo filodo			
oit 9	-			Data Format Co	ntrol bit		
5				pressed format			
				ompressed form			
bit 8				g Data Underru		(6)	
						een termination	due to a dat
	underrun			0 0 1			
	0 = Indicates	no data unde	errun error is de	etected			
bit 7-4	Unimplemen	ted: Read as	'0'				
Note 1:	These bits can o	nly be reset o	n POR.				
2:	If this bit is set, the				nd upon exiting	g Idle mode, the	re is a delay
	(TVREG) before F	-	-				
	All other combina			•			
4:	Execution of the	PWRSAV instru	uction is ignore	d while any of t	he NVM operat	tions are in prog	ress.
-							

- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
- 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_		VREGSF	_	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readal	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
hit 1E		Depart Flag hit					
bit 15	-	Reset Flag bit onflict Reset has	occurred				
		onflict Reset has		d			
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized	W Access Rese	et Flag bit		
	1 = An illega	al opcode detec	tion, an illeg	gal address mo	de or Uninitial	ized W registe	er used as a
		Pointer caused		Dogistor Dogot k	a not a courra	d	
bit 13-12	-	l opcode or Unir		Register Reset r	las not occurre	u	
bit 11	•	i ted: Read as '0 ash Voltage Reg		by During Sloop	, bit		
		Itage regulator i					
		Itage regulator			ing Sleep		
bit 10	Unimplemen	ted: Read as '0	,	-			
bit 9	CM: Configur	ation Mismatch	Flag bit				
	•	uration Mismatcl					
	•	uration Mismatcl					
bit 8		age Regulator S					
		egulator is activ					
bit 7	-	nal Reset (MCLF	-	node during Sie	eb.		
		Clear (pin) Res	,	red			
		Clear (pin) Res					
bit 6	SWR: Softwa	IRE RESET (Instru	uction) Flag	bit			
		instruction has l					
		instruction has i					
bit 5		oftware Enable/[Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
bit 4		hdog Timer Tim	e-out Elag bi	it			
with i		e-out has occurr	-				
		e-out has not oc					
	All of the Reset sta cause a device Re		set or cleare	d in software. S	etting one of th	ese bits in soft	ware does no
2:	f the FWDTEN Co	onfiguration bit is	s '1' (unprog	rammed), the W	/DT is always e	nabled, regard	lless of the

RCON: RESET CONTROL REGISTER⁽¹⁾ **REGISTER 6-1:**

e сy SWDTEN bit setting.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit (
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

bit 15-4	Unimplemented: Read as '0'
bit 3	PWCOL3: Channel 3 Peripheral Write Collision Flag bit
	1 = Write collision is detected0 = No write collision is detected
bit 2	PWCOL2: Channel 2 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected
bit 1	PWCOL1: Channel 1 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected
bit 0	PWCOL0: Channel 0 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 7		_	_				bit (
Legend:							
R = Readable		W = Writable			nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	ROON: Refer	ence Oscillato	r Output Enat	ole bit			
				on the REFCL	.K pin ⁽²⁾		
	0 = Reference	e oscillator outp	out is disabled	t			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ROSSLP: Re	ference Oscilla	ator Run in Sle	eep bit			
		e oscillator out e oscillator out		to run in Sleep d in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
		crystal is used lock is used as					
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
		ence clock divi					
		ence clock divi	•				
		ence clock divi ence clock divi	•				
		ence clock divi					
		ence clock divi					
		ence clock divi					
		ence clock divi					
		ence clock divi ence clock divi	-				
		ence clock divi	,				
		ence clock divi	•				
	0011 = Refer	ence clock divi	ded by 8				
		ence clock divi					
	0001 = Refer 0000 = Refer	ence clock divi	aed by 2				
bit 7-0			0'				
	ommplemen	ted: Read as '	U				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control x register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the "**Pin Diagrams**" section for the available 5V tolerant pins and Table 33-10 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1 in **Section 1.0 "Device Overview"**).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADCx module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States (COS), even in Sleep mode when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pulldown connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin, and eliminate the need for external resistors when pushbutton or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be dis-
	abled when the port pin is configured as a
	digital output.

EXAMPLE 11-1: PORTB WRITE/READ EXAMPLE

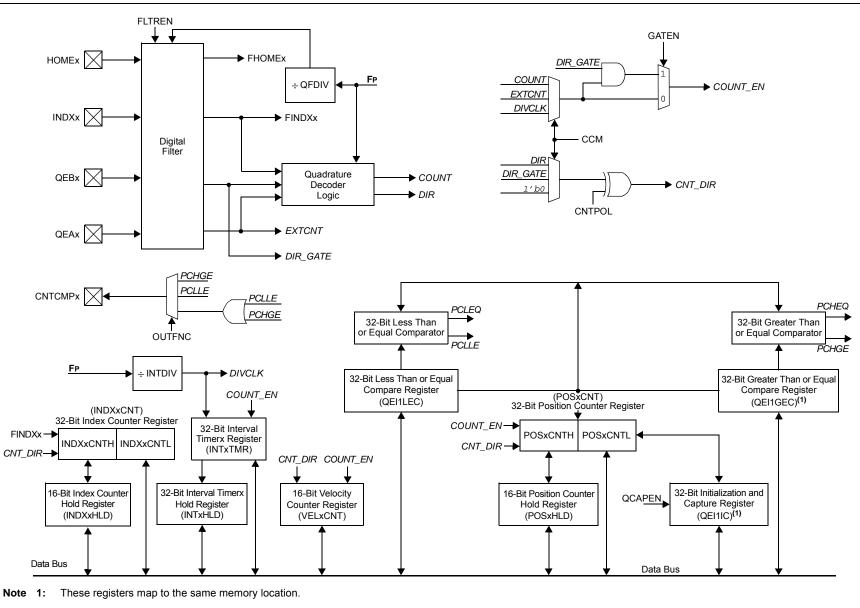
MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

REGISTER 11-30: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP35	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8		>: Peripheral Ou	•	•	RP35 Output	Pin bits	

2.1.1.0.0	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-31: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP37F	२<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		RP36R<5:0>				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
	OR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

FIGURE 17-1: QEIX BLOCK DIAGRAM

JSPIC33EPXXXGM3XX/6XX/7XX

REGISTER 21-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | | | | | | | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
			<u> </u>			<u> </u>	0-0		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemer	ted: Read as '	0'						
bit 7-6	SJW<1:0>: S	Synchronization	Jump Width	bits					
	11 = Length	1 = Length is 4 x TQ							
	10 = Length	is 3 x Tq							
	01 = Length								
	00 = Length	is 1 x Tq							
bit 5-0	BRP<5:0>: E	Baud Rate Pres	caler bits						
11 1111		⁻ Q = 2 x 64 x 1/l	FCAN						
	•								
	•								
	•								
		$Q = 2 \times 3 \times 1/F_{0}$							
	00 0001 = T	⁻ Q = 2 x 3 x 1/F(⁻ Q = 2 x 2 x 1/F(⁻ Q = 2 x 1 x 1/F(CAN						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
				a						
bit 15-13		>: Select PTG	Module Clock	Source bits						
	111 = Reserv 110 = Reserv									
		odule clock so	urce will be T3	CLK						
		odule clock so								
		odule clock so								
		10 = PTG module clock source will be TAD 01 = PTG module clock source will be Fosc								
		odule clock so								
bit 12-8	PTGDIV<4:0>	-: PTG Module	Clock Presca	ler (divider) bi	ts					
	11111 = Divid 11110 = Divid									
	•									
	•									
	00001 = Divic 00000 = Divic	•								
bit 7-4	PTGPWD<3:0	0>: PTG Trigge	er Output Pulse	e-Width bits						
		gger outputs ar								
	1110 = All trig	gger outputs ar	e 15 PIG cloc	k cycles wide						
	•									
	•									
		gger outputs ar gger outputs ar								
bit 3	Unimplement	ted: Read as '	0'							
bit 2-0	PTGWDT<2:0	D>: Select PTO	Watchdog Tir	mer Time-out (Count Value bits	3				
		log Timer will t								
		log Timer will t log Timer will t								
		log Timer will t								
		log Timer will t								
	010 = Watchd	loa Timer will t	ime-out after 1	6 PTG clocks						
	001 = Watchd	log Timer will t	ime-out after 8							

REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

bit 7

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CON	COE	CPOL	-	—	OPMODE ⁽²⁾	CEVT ⁽³⁾	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽³⁾	EVPOL0 ⁽³⁾	_	CREF ⁽¹⁾	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾

_	-			
		bit	0	

Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	CON: Op	Amp/Comparator Enable b	it				
		parator is enabled parator is disabled					
bit 14	COE: Co	mparator Output Enable bit					
		parator output is present on parator output is internal onl	•				
bit 13	CPOL: C	comparator Output Polarity S	Select bit				
		parator output is inverted parator output is not inverted	d				
bit 12-11	Unimple	mented: Read as '0'					
bit 10	OPMOD	E: Op Amp Select bit ⁽²⁾					
		mp is enabled mp is disabled					
bit 9	CEVT: C	omparator Event bit ⁽³⁾					
	inter	parator event, according to rupts until the bit is cleared aparator event did not occur	the EVPOL<1:0> settings, occ	urred; disables future triggers an			
bit 8	COUT: C	omparator Output bit					
	When CF	OL = 0 (non-inverted polar	ity):				
	1 = VIN+						
	0 = VIN+						
		POL = 1 (inverted polarity):					
	1 = VIN+ 0 = VIN+	••					

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER⁽⁴⁾ (CONTINUED)

- bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 TP

 0001 = Wait of additional 1 TP
 0000 = No additional Wait cycles (operation forced into one TP)

 bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits^(1,2,3) 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP
- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 4.1.8 "Wait States" in the "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33/PIC24 Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.
 - 4: This register is not available on 44-pin devices.

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

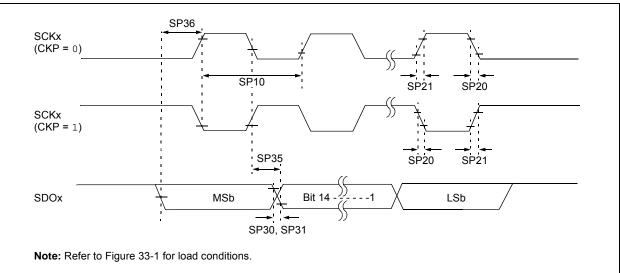
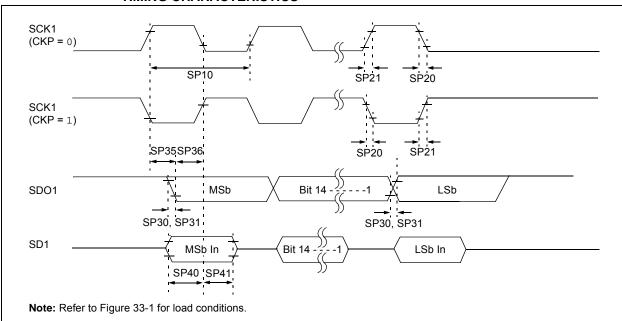

DC CHA	OC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VBORMIN	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	—	10	—	mA		
D138a	Tww	Word Write Cycle Time	46.5	46.9	47.4	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 2)	
D138b	Tww	Word Write Cycle Time	46.0	_	47.9	μs	Tww = 346 FRC cycles, Ta = +125°C (Note 2)	
D136a	TPE	Row Write Time	0.667	0.673	0.680	ms	Trw = 4965 FRC cycles, Ta = +85°C (Note 2)	
D136b	TPE	Row Write Time	0.660	—	0.687	ms	Trw = 4965 FRC cycles, Ta = +125°C (Note 2)	
D137a	TPE	Page Erase Time	19.6	20	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 2)	
D137b	TPE	Page Erase Time	19.5	—	20.3	ms	TPE = 146893 FRC cycles, TA = +125°C (Note 2)	

TABLE 33-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 33-19) and the value of the FRC Oscillator Tuning register.

TABLE 33-33:SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY)TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	—	_	15	MHz	(Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-26: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	—	—	25	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	—		—	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20			ns		

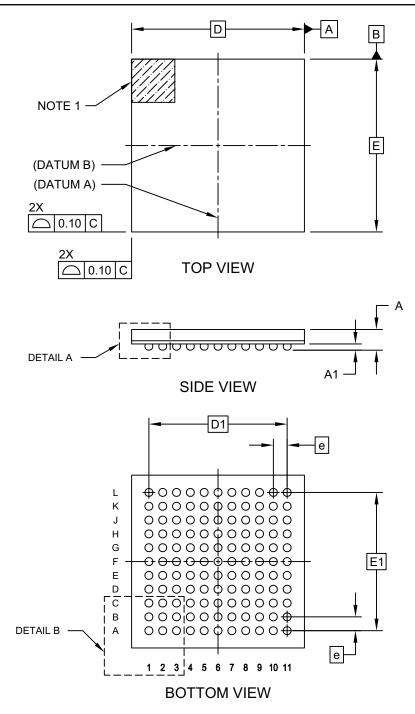
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		ADC A	ccuracy (10-Bit N	lode)			
AD20b	Nr	Resolution	10 Data Bits			bits		
AD21b	INL	Integral Nonlinearity	-0.625	_	0.625	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$	
			-1.5	_	1.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-0.25	_	0.25	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD23b	Gerr	Gain Error	-2.5		2.5	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-2.5	_	2.5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24b	EOFF	Offset Error	-1.25		1.25	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1.25	_	1.25	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25b	_	Monotonicity	—	_	—	_	Guaranteed	
		Dynamic P	erforman	ce (10-E	Bit Mode)			
AD30b	THD	Total Harmonic Distortion ⁽³⁾	—	64	—	dB		
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	_	57	—	dB		
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB		
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	_	550	—	kHz		
AD34b	ENOB	Effective Number of Bits ⁽³⁾		9.4	—	bits		

TABLE 33-58: ADCx MODULE SPECIFICATIONS (10-BIT MODE)


Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, may have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2